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Abstract. This technical report provides an introduction to solving economic models us-

ing deep learning techniques. We offer a simple yet rigorous overview of deep learning

methods and their applicability to economic modeling. We illustrate these concepts using

the benchmark of modern macroeconomic theory: the stochastic growth model. Our results

emphasize how various choices related to the design of the deep learning solution affect the

accuracy of the results, providing some guidance for potential users of the method. We also

provide fully commented computer codes. Overall, our hope is that this report will serve

as an accessible, useful entry point to applying deep learning techniques to solve economic

models for graduate students and researchers interested in the field.
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Résumé Non Technique

Les banques centrales ont rapidement adopté les méthodes basées sur l’intelligence artifi-

cielle pour mener aussi bien des analyses statistiques que des tâches de supervision (Banque

des règlements internationaux, 2024). Récemment, il a été établi que les techniques du deep

learning (DL, apprentissage profond), inspirées par la structure des réseaux neuronaux, per-

mettent de résoudre les modèles économiques à agents hétérogènes avec risque agrégé, les

modèles de cycle de vie et les modèles multi-pays souvent utilisés par les banques centrales.

Toutes les techniques de DL reposent sur deux idées simples mais puissantes. Premièrement,

il est possible d’approximer des fonctions très complexes par une combinaison de nombreuses

fonctions simples. Deuxièmement, la qualité de cette approximation peut être évaluée et

améliorée par des méthodes de simulation Monte Carlo. Ces deux idées permettent aux

techniques de DL de s’attaquer à des problèmes très difficiles, de la reconnaissance visuelle

à la compréhension de la parole.

Dans le domaine de la résolution de modèles économiques, deux obstacles principaux

limitent le recours aux techniques de DL. Le premier est la terminologie souvent abstraite

et parfois confuse associée aux techniques de DL, qui crée une aura intimidante pour les

non-initiés. Le second obstacle est la difficulté liée aux multiples décisions de spécification à

prendre avant de pouvoir appliquer les techniques de DL.

Dans ce rapport, notre objectif est de contribuer à surmonter ces deux obstacles. Nous

commençons par fournir un aperçu des techniques de DL et de leur applicabilité à la

résolution de modèles économiques. Nous soulignons notamment les différentes décisions

que l’utilisateur de la méthode doit prendre et donnons quelques indications susceptibles de

guider son choix. Ensuite, nous considérons une application de base : la résolution du modèle

de croissance stochastique, l’environnement de référence de la théorie macroéconomique mod-

erne. Nous montrons comment chaque choix de l’utilisateur affecte la qualité de la solution

DL, ce qui nous permet d’illustrer certains principes généraux susceptibles d’aider à choisir

la meilleure configuration.
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1. Introduction

Central banks have been early adopters of artificial intelligence (AI) and deep learn-

ing (DL) for bank supervision, payment systems oversight, and statistical analysis (Bank

for International Settlements, 2024). Recent advances in computational economics show

that DL techniques are useful to tackle high-dimensional problems in economics, includ-

ing heterogeneous-agent models with aggregate risk (Maliar, Maliar, and Winant, 2021),

large-scale central-bank models (Lepetyuk, Maliar, and Maliar, 2020), life-cycle models (Azi-

novic, Gaegauf, and Scheidegger, 2022), and multi-country models with migration linkages

(Fernandez-Villaverde, Nuno, Sorg-Langhans, and Vogler, 2020).

All DL techniques rely on two simple but powerful ideas. First, a composition of many

simple functions can provide a good approximation to even very complex mappings. Second,

Monte Carlo methods can be used to assess the quality of the approximation and to improve

it. Together, these two ideas make it possible for DL techniques to tackle very difficult

problems, from pattern recognition in images to speech understanding. Within the economic

literature, they also make DL techniques a special case of projection methods, similar for

instance to the grid-free parametrized-expectation algorithm proposed by Christiano and

Fisher (2000).1 However, in contrast to traditional projection methods, DL algorithms are

not subject to the curse of dimensionality, which occurs whenever the computational burden

of solving a problem increases exponentially as the dimension of the problem grows. This

advantage makes DL methods particularly appealing when dealing with large models.

DL overcomes the curse of dimensionality by harnessing the power of neural networks.

Inspired by the structure of the human brain, neural networks are computational models

made of interconnected nodes, known as neurons, organized in successive layers. Each neuron

receives input data, processes it, and passes the result to the next layer. Through a process

called training, neural networks learn from examples to perform various tasks. Once well

trained, neural networks are powerful tools to discover and mimic complex patterns. In

particular, they can learn how to solve economic models by approximating the decision rules

of the various agents populating the economy.

In our view, there are two main obstacles to the development of DL solution methods in

economics. The first is the often abstract and sometimes confusing terminology associated

with DL techniques, which creates an intimidating aura for outsiders. The second is the

difficulty involved in various decisions that a researcher must make to apply DL techniques

to solve an economic model: How should the model be written? How should the neural

network be designed? How should it be trained? These choices all affect the performance of

the method and the quality of the solution it yields, but there is limited available guidance.

In fact, finding a good configuration requires both expertise and some trial-and-error process,

1See Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016) for a detailed review of projection

methods.
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but most published studies tend to understate these difficulties by focusing on successfully

trained networks.

In this report, our aim is to contribute to relaxing these two obstacles. In Section 2, we

provide a relatively self-contained overview of DL techniques and of their applicability to

solving economic models. Our objective is to provide an accessible yet rigorous presentation

that demystifies some of the aura of the approach and allows the reader to grasp its key

features. We emphasize the various choices an user of the method must make and summarize

the existing guidance. Then, in Section 3, we consider an application to solving the canonical

stochastic growth model, the benchmark environment of modern macroeconomic theory. To

highlight the importance of the choices related to the design of the neural network and to the

training process, we study a variety of possible setups and characterize how each choice affects

the final performance of the approximation method. This allows us to draw some conclusions

to guide the fine-tuning process necessarily required by DL methods. Throughout, our main

objective is pedagogical. Our main hope is that interested graduate students and researchers

find our presentation a beneficial entry point to DL techniques. We also make our code freely

available at https://notes.quantecon.org/submission/65449f6b8f6a1a0016fc4544.

Two additional observations are in order. First, the literature on DL in general as well as on

its applications in economics is enormous. While we point to a number of relevant references,

our presentation mostly builds upon Goodfellow, Bengio, and Courville (2016) for DL in

general, and on Maliar, Maliar, and Winant (2021) for the economic application. Second,

the application of DL techniques to solving the stochastic growth model is deliberately

simple. The framework is extremely well known and should be familiar to most economists,

and the step-by-step nature of numerical methods, in which understanding elementary topics

lays the groundwork for tackling more complex problems, makes it an attractive reference.

Thus, even though we do not claim to provide universal principles, our insights likely hold

for most DL applications to economics.

2. A Deep Learning Approach to Solve Economic Models

This section provides a non-technical overview of the DL approach proposed by Maliar,

Maliar, and Winant (2021) to solve economic models. To make the discussion accessible

to economists without background in AI and relatively self-contained, we also review the

most important DL concepts. Goodfellow, Bengio, and Courville (2016) provide a thorough

textbook treatment of DL theory and applications.

2.1. The approximation problem. A generic AI problem involves approximating an un-

known function F ? : Rm → Rn using the information provided by a set of potentially noisy

observations on inputs x and outputs y = F ?(x). With appropriate choices of F ?, this setup
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encompasses both simple statistical problems (estimating conditional moments or full con-

ditional distributions) and more complex AI tasks (classification, detection, image or speech

recognition, translation, . . . ).

A strategy to solve the approximation problem is as follows. Let S = {F (·;θ) : θ ∈ Rp}
denote a set of known functions indexed by the vector of parameters θ and L : Rn×Rn → R
denote a loss function penalizing approximation errors, so that L [F (x,θ), y] measures the

cost associated with a discrepancy between the prediction F (x,θ) and the actual output

y. Letting P : Rm × Rn → R+ denote the joint cumulative distribution function of (x,y),

solving the approximation problem over S is equivalent to finding the parameter vector

associated with the smallest expected approximation error:

θ? = argminθ Ξ(θ), (1)

where the expected approximation error

Ξ(θ) :=

∫
L [F (x,θ), y] dP (x,y) = E {L [F (x,θ), y]} (2)

is also called expected cost, expected loss, or expected risk.

Clearly, this strategy will only provide an interesting solution to the approximation prob-

lem under specific conditions. First, the candidate set S must be ‘flexible’ enough to contain

functions close to F ?. If this is not the case, even the loss-minimizing function will be a

poor approximation to F ?, a phenomenon called underfitting. Second, solving the minimiza-

tion problem over θ must be feasible in practice. This requires being able to replace the

unknown objective function Ξ(θ) by a valid approximation and being able to perform the

actual minimization.

The crux of DL methods is to provide a framework satisfying all these conditions to

make the approximation strategy operational. In particular, DL offers: (i) a way to replace

the unknown expected risk by an easy-to-measure empirical counterpart based on observed

data; (ii) a set of candidate functions with attractive properties, known as neural networks;

(iii) efficient numerical methods to find parameter values associated with small approxima-

tion errors, namely variations of gradient descent; (iv) validation techniques that ensure

the robustness of the results. We present these elements in turn, before discussing their

application to solving economic models.

2.2. The objective function. Minimizing the expected loss Ξ(θ) is not feasible in practice

because the joint distribution of inputs and outputs is unknown. A key motivation of DL

is that data availability solves this issue: given enough observations on input-output pairs,

it is possible to invoke standard laws of large numbers to build an accurate estimate of the

objective function.
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In particular, let {(xi,yi)}ni=1 denote a sample of n independent observations on inputs

and outputs. Then, the empirical cost

Ξ̂n(θ) =
1

n

n∑
i=1

L [F (xi,θ), yi] (3)

provides an unbiased and consistent estimate of Ξ(θ). Given a loss function L, a candidate

function F , and a parameter vector θ, it is easy to compute Ξ̂n(θ), which is sometimes

referred to as the empirical loss or the empirical risk. In practice DL algorithms approximate

F ? by minimizing Ξ̂n(θ) rather than Ξ(θ) with respect to θ.

Because the loss function L quantifies the discrepancy between model-implied outputs

and actual observations, its choice is application-dependent. For instance, a continuous loss

function might work well when the output is a real number, but would be less adapted to a

classification problem with binary output. As discussed below, Maliar, Maliar, and Winant

(2021) cast economic models in DL form using a regression representation in which F outputs

a real number. A natural loss function in this case is the mean squared error (MSE):

LMSE(y1, y2) = (y1 − y2)2.

2.3. Artificial neural networks. Artificial neural networks are computational models de-

signed to transform input data into output data in potentially complex ways. More simply,

they are software representations of functions mapping an input space into an output space.

Modern DL techniques use neural networks to solve various approximation problems. As

explained in Goodfellow, Bengio, and Courville (2016), the increasing ability to develop,

optimize, and use neural networks is the key factor behind recent progress in AI.

2.3.1. Neurons, layers, and networks. The basic units of neural networks are called neurons,

nodes, perceptrons, or units. A neuron is a simple function g : Rk → R that takes as input

a vector z ∈ Rk, transforms it using an affine mapping parametrized by a vector of weights

γ ∈ Rk+1, and finally applies a non-linear function f to output a real number. Formally,

g(z;γ) = f

(
γ0 +

k∑
i=1

γizi

)
.

The function f : R → R is called the activation function of the neuron and shapes the

properties of its output. The intercept γ0 is sometimes called the bias of the affine transform.

Stacking p neurons in a vector forms a vector-valued mapping from Rk to Rp, defined by

G(z; Γ) =

g(z;γ1)

. . .

g(z;γp)

 ,
where Γ = (γ1, . . . ,γp) contains the parameters of the affine transforms associated with

the p nodes. Such vector functions stacking neurons are called layers, and the number of
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neurons in a specific layer is called its width. Our presentation assumes that all neurons in

a layer share the same input z and the same activation function f for clarity only; more

sophisticated structures are possible.

Finally, a neural network, also known as a neural net or a multilayer perceptron, is a

composition of several layers. For instance, letting G1, . . . , Gl denote l layers of conformable

dimensions, and keeping affine parameters implicit, a neural network mapping Rm into Rn

can be defined as

N(x) = Gl {. . . G2[G1(x)] . . . } ,

where x ∈ Rm, G1 admits anm-dimensional vector as input, andGl outputs an n-dimensional

vector. To introduce further vocabulary, the first and last layers in a network are called re-

spectively the input layer (G1 in this example) and the output layer (Gl), while the additional

layers located between them are called the hidden layers. The number of layers l in a neural

network is called its depth, while its width is that of the widest layer.

This very specific structure explains most of the terminology related to neural network:

• From a mathematical perspective, the term network refers to the composition process,

which can be represented visually by a graph describing how the various functions

act together to transform inputs into outputs. Figure 1 provides such a visual repre-

sentation for a network mapping x ∈ R3 to y ∈ R2 by composing four layers. Note

that the number of neurons in the input and output layers are constrained by the

dimensions of the variables of interest, while the widths of the two hidden layers are

not.

• From a biological perspective, the term neural refers to the analogy with the biological

neural networks present in animal and human brains. These structures also consist

of several layers of connected units called neurons, which all receive a signal as input,

transform it, and then process it to other units in different layers.

Importantly, not all neural networks qualify as DL tools. The adjective deep refers to the

depth of the network, i.e. to the number of layers. Equivalently, the concept refers to the

number of successive function compositions defining the network. A network consisting of

more than three layers qualifies as a DL algorithm, with less sophisticated networks referred

to as shallow. The main idea of DL is that deeper networks are more flexible and have the

potential to learn more complex functions.

2.3.2. Approximation properties. Neural networks have good approximation properties. A

variety of universal approximation theorems indicate that a neural network can approximate

any continuous function from one finite-dimensional space to another with any desired non-

zero amount of error, provided that it is given sufficient depth or sufficient width.2 In

2See, e.g., Cybenko (1989), Hornik, Stinchcombe, and White (1989), and Leshno, Lin, Pinkus, and

Schocken (1993) for formal derivations.
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Figure 1. Architecture of a neural network

x1

x2

x3

y1

y2

Notes. This neural network takes x ∈ R3 as input and produces y ∈ R2 as output. It

features four different layers: the orange nodes correspond to the input layer, the green

nodes to two hidden layers, and the pink nodes to the output layer. The arrows repre-

sent the flows of information through the network, as the original input is successively

transformed by the different layers of neurons.

addition, for a given approximation error, the number of parameters required to approximate

a function with a neural network increases linearly with the dimension of the input x, while

it increases exponentially for most other classes of approximators; hence, neural networks are

less subject to the well-known curse of dimensionality (Barron, 1994; Fernández-Villaverde,

Hurtado, and Nuño, 2019). Finally, neural networks are robust to multi-collinearity and

perform well even when approximating functions with various kinks and discontinuities.

These attractive features explain the success of deep neural networks in a variety of real-

world applications.

Unfortunately, the approximation theorems are not constructive: they imply that a neural

network can represent a set of interesting functions, but do not specify how to identify the

network structure associated with the best fit. In addition, there is no guarantee that the

network will have the ability to actually learn the function in practice, i.e. that identifying

the loss-minimizing value of θ is feasible given the amount of available data.

2.3.3. Design issues. It follows from the previous discussion that the ideal network architec-

ture for a specific task must be found by experimentation and validation. From a practical

perspective, this experimentation involves a number of design decisions related to (i) the

activation function(s) in each layer, (ii) the width of each layer, and (iii) the depth of the

network. Variations in the way neurons in one layer connect to the next layer have been

explored, but we will not discuss them; instead, we focus on the fully connected case shown

in Figure 1, in which each neuron connects to all neurons in the next layer. Together, these

decisions define the architecture of the network and influence its properties.

Activation functions. As described above, without activation function the output of a neuron

would be an affine transform of the input vector. The role of activation functions is to
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introduce nonlinearity in the algorithm, which is crucial to the good performance of neural

networks in complex settings. For instance, all universal approximation theorems require the

presence of nonlinear activation functions, although the specific type of nonlinearity varies

from one result to the other.

Historically, the earliest ML algorithms were asked to decide whether or not an input,

represented by a vector of characteristics, belongs to some specific class. The output of a

neuron was a binary function, returning one if the affine transform γ0 +
∑

i γizi was above

some threshold and zero otherwise. In today’s DL vocabulary, this setting corresponds to

using a step function as activation function. With the development of larger models, the

poor gradient properties of the step function became problematic: its derivative is zero ev-

erywhere, except at the discontinuity where it explodes. As a result, smooth approximations

to the step function became the norm for activation functions, for instance the logistic sig-

moid and the hyperbolic tangent.3 These functions are continuous and differentiable, thus

allowing gradient-based optimization. However, they saturate quickly, which means that

their gradient goes to zero quickly away from the origin, which can stall out gradient-based

learning. This is also known as the vanishing gradient problem (Hochreiter, 1998).

As discussed in Goodfellow, Bengio, and Courville (2016, Chapter 6), recent experience

with large DL models has highlighted two important points. First, so-called rectified linear

units (ReLU) activation functions, f(z) = max(0, z), are excellent default choices for neurons

located in the input and hidden layers of deep neural neural networks. From a numerical

perspective, ReLU functions benefit from sparse activation (in a randomly initialized net-

work, only about 50% of hidden nodes return a non-zero result) and efficient computation

(they require only multiplication, addition, and comparison). Their gradient properties are

also good and can be improved further through simple generalization, like the leaky ReLU

function f(z) = max(0, z) + 0.01 min(0, z) which has non-zero gradient almost everywhere.

Second, in actual applications, many different activation functions yield comparable perfor-

mance. As a result, a reasonable benchmark is to use ReLU activation functions for neurons

located in the input and hidden layers.

Choosing the activation function(s) for the output layer requires special attention because

they define the overall output of the network. In particular, it is desirable to adapt the

choice of the activation function(s) to the properties of the desired output. For instance,

a linear function f(z) = z works well when the output is unconstrained. On the other

hand, an exponential function f(z) = exp(z) is adapted to settings in which output is

3The logistic sigmoid function is σ(z) = (1 + e−z)−1; it is symmetric around 0 and outputs a value in

the range [0, 1]. The hyperbolic tangent function is tanh(z) = (ez − e−z)/(ez + e−z) = 2σ(2z)− 1; it is also

symmetric around z = 0 and outputs a value in the range [−1, 1].
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non-negative. Alternatively, when the network represents a probability, sigmoid or softmax

functions implement the correct restrictions.4

Depth and width. Choosing the depth (number of layers) and width (number of neurons per

layer) of a neural network is the most difficult design decision because the best choice is

largely application dependent. Two rules of thumb may help researchers. First, deeper net-

works typically require far fewer neurons per layer, and therefore far fewer parameters, and

they tend to generalize better (Goodfellow, Bengio, and Courville, 2016, Chapter 6). There-

fore, in general deeper networks are preferable to wider networks. Second, the complexity

of the neural network should be adapted to the complexity of the underlying approximation

problem, related for instance to the dimensions of the target function F ? or to its nonlin-

earity. As shown below, typical economic models are simple enough not to warrant using

overly complex networks.

Finally, we note that DL methods propose strategies to fine-tune the architecture of the

network after the optimization step. We discuss this validation step below.

2.4. Training the network with gradient descent. With a candidate architecture in

place, the next task is to optimize the performance of the network with respect to the vector

of parameters. Using the notation introduced in Section 2.1, S denotes the set of neural

networks with the chosen architecture, θ = Γ contains all neuron parameters, and the goal

is to find the value of θ associated with the smallest empirical loss. In the DL context, this

optimization step is called learning or training because it improves the network performance

using the information contained in observed data.

In most DL applications, minimization of Ξ̂n with respect to θ is performed using variations

of gradient descent, a standard algorithm for finding a local minimum of a differentiable

function by taking repeated small steps in the direction opposed to the current gradient

of the function.5 The method rests on a basic result in linear algebra: the gradient of a

differentiable function G : Rm → R indicates the local direction of steepest ascent, so that

G(x+ λv)−G(x) is maximized in the neighborhood of x ∈ Rm, i.e. for λ > 0 small, when

v = ∇G(x) is the gradient of G evaluated at x. Conversely, G(x + λv) − G(x) is locally

minimized by moving in the direction opposite to the gradient (steepest descent).

4The softmax function is an unusual activation function in that it applies to the full vector of inputs, rather

than entry-by-entry: if z ∈ Rk, then softmax(z) = [µ(z1), µ(z2), . . . , µ(zk)]′, with µ(zi) = ezi/(
∑
j e
zj ).

Softmax(z) outputs a vector whose entries sum to one, which can be interpreted as a probability distribution.
5Applying convex optimization techniques like gradient descent to non-convex objective functions like

neural networks may seem suspicious. However, recent experience shows that DL models work very well

when trained with gradient descent (Goodfellow, Bengio, and Courville, 2016, Chapter 6). One explanation

is that gradient descent is typically able to find a very low value of the objective function in a reasonable

amount of time, which is enough for the trained model to perform well.
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It follows from equation (3) that the gradient of the empirical loss is

∇Ξ̂n(θ) =
1

n

n∑
i=1

∇θL [F (xi,θ), yi] . (4)

Therefore, each evaluation of the gradient requires a full pass through the dataset. Algo-

rithms implementing such complete passes are referred to as batch learning, because they

consider a full ‘batch’ of data before updating the parameter vector θ. However, such passes

become prohibitively expensive when the number of available observations increases, so that

basic gradient descent needs some modifications to perform well in DL applications powered

by very large datasets.

A key insight is that the gradient defined by equation (4) is a sample mean. Therefore,

under the assumption that the dataset consists of independent and identically distributed

(i.i.d.) points, basic statistical theory implies that averages computed from much smaller

subsamples provide unbiased estimates of the true gradient. These smaller subsamples are

called mini-batches and the corresponding algorithm implements mini-batch learning. See

Algorithm 1 for a formal description.

Algorithm 1: Stochastic gradient descent (Goodfellow, Bengio, and Courville, 2016)

input : initial parameter vector θ0
input : learning rate λ > 0

input : stopping criterion C
output: loss-minimizing parameter vector θ?

while stopping criterion C not met do
sample a mini-batch of n′ input-output pairs uniformly from the training dataset,

with n′ << n ;

estimate the gradient of the objective function as

g =
1

n′

n′∑
j=1

∇θL
[
F (xj,θ), yj

]
using observations from the mini-batch ;

update the vector of parameters

θ ← θ − λg
using gradient descent ;

check if C holds true ;

end

Goodfellow, Bengio, and Courville (2016) refer to mini-batch learning as an example

of stochastic gradient descent, where the adjective ‘stochastic’ emphasizes that a random

estimate of the gradient is used in place of the true sample gradient to update the parameters
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of the model. For other authors, e.g. LeCun, Bottou, Orr, and Müller (2012), stochastic

gradient descent corresponds to the more specific case of a mini-batch of a single observation.

In any case, stochastic gradient descent has become the method of choice to train large neural

networks: it is much faster than batch learning; it does not discard much information; and

it also often results in better solutions.6

From a practical perspective, batch and stochastic gradient descent methods need three

elements: (i) the ability to compute the gradient of the objective function, (ii) a way to

initialize the vector of parameters, and (iii) a value for the learning rate λ. Most DL algo-

rithms compute the gradient using a method called back-propagation. The name comes from

a simple analogy: just as propagating the input x forward through the network allows to

compute the output y, propagating information from the cost function backward through

the network and applying the chain rule of differentiation provides an efficient way to com-

pute and evaluate the relevant gradient function ∇θL. Back-propagation is automatically

implemented in most DL libraries, so we do not discuss it here.

A standard way to initialize the parameter vector is to choose small independent val-

ues for the elements of θ, for instance by drawing from Gaussian or uniform distributions.

More sophisticated initialization techniques exist: for instance, our implementation below

runs on PyTorch, a Python machine-learning library that initializes weights according to a

methodology proposed by He, Zhang, Ren, and Sun (2015).

Finally, the choice of the learning rate may be the most important decision related to gra-

dient descent. Although we denote λ as a constant, in practice it is preferable to gradually

decrease the value of the learning rate over time. The idea is that the noise induced in suc-

cessive gradient estimates by random mini-batch sampling does not vanish at the minimum

of the objective function and needs to be dampened by a smaller learning rate.7 In addi-

tion, fine-tuning the value of the learning rate improves the properties of gradient descent:

too large a rate might create violent oscillations in parameter values because of shifts in

the gradient slope, while too low a rate might result in excessively slow convergence to the

optimum. Possible strategies are to decrease linearly or exponentially the learning rate over

successive iterations, but the best choices for the initial learning rate and the speed of the

dampening process are extremely application dependent: as noted by Goodfellow, Bengio,

and Courville (2016, Chapter 8), “[t]his is more of an art than a science, and most guidance

6Stochastic learning does not discard much information because observations are often redundant in large

datasets. The ability to reach better solution arises from the noise induced by mini-batch sampling, which

might push the parameter vector away from a local minimum and to the neighborhood of a deeper minimum.

In most applications, the mini-batches are sampled without replacement from the training dataset to ensure

that successive gradient estimates are independent. Performing a complete pass through the dataset using

mini-batches is sometimes called an epoch in the DL literature.
7Goodfellow, Bengio, and Courville (2016, Chapter 8) provide sufficient conditions on the learning rate

that guarantee convergence of stochastic gradient descent.
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on this subject should be regarded with some skepticism.” Richer learning schemes are also

possible, for instance by using an average of present and past gradient estimates at each

iteration to accelerate convergence (a practice known as momentum) or by using a different

learning rate for each weight coefficient.

2.5. Validation and regularization. The overall objective of DL techniques is to provide

algorithms that perform well on new inputs: indeed, training a model on a given dataset is

useless if its performance does not generalize well to the yet unknown inputs that will arise

in actual applications.

As often in statistics, the implicit assumption is that the training sample is representative

of the data generating process, so that a low empirical loss ensures good performance on

new observations. One obvious condition for such a good performance is that the model

does not underfit, i.e. that it is able to identify and learn the important properties of the

data from the training sample. This is easy to check by gauging the empirical performance

on the training sample. Another important condition, however, is that the model does not

overfit, i.e. that it has not learned various idiosyncrasies of the training dataset that will not

generalize well to new inputs.

From a broader perspective, these two conditions imply that the model should have the

right capacity for the task it faces, i.e. that it is complex enough to represent the data, but

not overly complex. Since the architecture of a DL model largely determines its capacity, this

is equivalent to saying that the model should have the right structure, e.g. in terms of depth

and width for neural networks. Checking that this is indeed the case is called validation.

A simple way to perform model validation is to split the available observations into three

disjoint datasets: a training set, a validation set, and a test set. Typically, the split attributes

70-80% of the data to the training set and 10-15% to both the validation and test sets. As

the names indicate, learning the parameter values that minimize the empirical loss takes

place only on the training set, the final tuning of the model hyperparameters occurs on

the validation set, and the final performance of the model is estimated from the test set.

A large generalization error, as measured by the empirical loss on the test set, signals an

overfit problem. In this case, the capacity of the model needs to be reduced, for instance by

reducing the width of a network or removing a layer. Iterating back and forth between these

steps is the best way to identify the best architecture for a given DL problem.

Another possibility to reduce overfitting issues is to automatically penalize model com-

plexity during the training step. This process, called regularization, aims at favoring parsi-

monious representations of the data, while allowing enough generality to avoid underfitting.

It has a long history in statistics: standard model selection tools such as the Akaike and

Bayesian information criteria and ridge regression are classical examples of regularization for

linear models. Goodfellow, Bengio, and Courville (2016, Chapter 7) discuss applications of

this idea to DL problems.
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2.6. Solving economic models using DL. Finally, we present the method proposed by

Maliar, Maliar, and Winant (2021) to solve dynamic economic models with DL. Their ap-

proach involves two key steps: (i) transforming the problem of solving the economic model

into a simpler minimization problem and (ii) applying DL tools to solve this minimization

problem. Maliar, Maliar, and Winant discuss three transformations of economic models.

For simplicity, we focus on the transformation based on first-order optimality conditions.

The other two transformations, based on lifetime utility and Bellman equations, are fairly

similar; see Maliar, Maliar, and Winant (2021) for details.

2.6.1. From the economic model to the minimization program. The general equilibrium of a

wide class of dynamic models used in macroeconomics admits the following generic repre-

sentation. An exogenous state vector zt ∈ Rnz evolves according to the Markov process

zt = Z(zt−1, εt), (5)

where εt ∈ Rnε is an i.i.d. innovation and Z : Rnz × Rnε → Rnz is a known function. An

endogenous state vector st ∈ Rns is driven by the exogenous process and by an endogenous

control vector ct ∈ Rnc according to a known function S : Rnz × Rns × Rnc → Rns :

st+1 = S(zt, st, ct). (6)

(Notice that the value of st+1 is realized at date t. This notation, which follows Maliar,

Maliar, and Winant, is different from the usual timing convention in macroeconomics, ac-

cording to which the date of a variable indicates the period at which it is realized.) At

each period, the various elements of the control vector solve some constrained optimization

problem(s). Consequently, they verify nc first-order/equilibrium conditions of the form

Etfj(zt, st, ct, zt+1, st+1, ct+1) = 0, j = 1, . . . , nc, (7)

where (zt, st) is fixed, Et denotes the expectation operator conditional on date-t information,

and the fj : Rnz × Rns × Rnc × Rnz × Rns × Rnc → R, j = 1, . . . , nc, are known functions

describing the economic forces at play in the model.8 Since the only source of uncertainty

in equation (7) is εt+1, which is implicitly contained in zt+1, an equivalent representation of

the equilibrium conditions is

Eε′fj(z, s, c, z
′, s′, c′) = 0, j = 1, . . . , nc, (8)

with primes denoting next-period variables.

Solving the model amounts to finding a time-invariant decision rule, i.e. a function ϕ? :

Rnz × Rns → Rnc such that c = ϕ?(z, s) verifies all the conditions in equation (8):

Eε′fj [z, s, ϕ?(z, s), z′, s′, ϕ?(z′, s′)] = 0, j = 1, . . . , nc, (9)

8More precisely, these nc equations characterize the solution of the model, under standard assumptions

on concavity and smoothness. They can be Euler equations, market-clearing conditions, or versions of

Kuhn-Tucker conditions.
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for all possible (z, s) pairs, given the laws of motions for z and s.

Maliar, Maliar, and Winant (2021) replace the problem of finding the true decision rule

ϕ? by a simpler one. Consider a family of parametric candidate decision rules Sϕ =

{ϕ(·;θ) : θ ∈ Rp} indexed by the vector of parameters θ ∈ Rp. Intuitively, the most ac-

curate approximation to the true decision rule contained in Sϕ is the ϕ(·;θ) function that

best fits the zero restrictions listed in equation (9). This can be formalized as a residual

minimization program: given the distribution of (z, s, ε′), the best approximation to ϕ? in

Sϕ is ϕ(·;θ?), where

θ? = argminθ Ξ(θ), (10)

with

Ξ(θ) := E(z,s)

{
nc∑
j=1

νj [Eε′fj (z, s, ϕ[z, s;θ], z′, s′, ϕ[z′, s′;θ])]
2

}
(11)

for some weights ν1, . . . , νnc > 0 that may affect the relative scaling of the equilibrium

conditions. Due to the specific form of the objective function, Maliar, Maliar, and Winant

refer to their method as Euler residual minimization.

One notable feature of the objective function (11) is the double level of randomness,

coming from the innovation ε′ on the one hand and the current state variable (z, s) on the

other. This is an important difference with respect to the equilibrium conditions (9), whose

randomness originates from ε′ only since (z, s) is taken as given. Averaging across possible

state variables in equation (11) ensures that the decision rule will be optimized over the full

state space, instead of being specifically trained around an arbitrary point. This strategy

helps the learning step find an accurate decision rule over the relevant domain.

Because approximating nested expectations is costly from a computational perspective,

Maliar, Maliar, and Winant (2021) devise an all-in-one (AiO) expectation operator that

combines the separate expectation operators present in equation (11) into a single one.

Mathematically, AiO expectation is based on the property that

[Eεg(z, ε)]2 = [Eε1g(z, ε1)] [Eε2g(z, ε2)] = E(ε1,ε2)g(z, ε1)g(z, ε2),

where z and ε are random vectors, ε1 and ε2 are independent random vectors with the same

distribution as ε, and g is a measurable function of appropriate dimensions. Using this result,

it is possible to write the objective function as

Ξ(θ) = E(z,s,ε1,ε2)

{ nc∑
j=1

νj [fj (z, s, ϕ[z, s;θ], z′, s′, ϕ[z′, s′;θ])]
∣∣
ε=ε1

× [fj (z, s, ϕ[z, s;θ], z′, s′, ϕ[z′, s′;θ])]
∣∣
ε=ε2

}
,
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which can be evaluated using draws from a single composite random vector ω := (z, s, ε1, ε2).

Thus, the objective can be written more compactly as

Ξ(θ) = Eω

[
nc∑
j=1

νjfj,1(ω)fj,2(ω)

]
:= Eωg(ω;θ), (12)

where fj,i(ω) = fj (z, s, ϕ[z, s;θ], z′, s′, ϕ[z′, s′;θ]) |ε=εi .

2.6.2. DL implementation. As noted by Maliar, Maliar, and Winant (2021), the obvious

similarity between the generic AI problem (1) and the minimization of the expected residual

function (12) makes it possible to solve economic models using the DL machinery. In practice,

the implementation follows the steps described above: (i) define an empirical counterpart to

the expectation function Ξ(θ) in equation (12) and the set of candidate decision rules Sϕ,

(ii) optimize the model, and (iii) evaluate and validate the solution. See Algorithm 2.

As before, steps (i) and (ii) involve replacing expectation functions by empirical averages.

An important difference between standard DL applications and solving economic models

is that, in the former case, the DGP is unknown but real-world data make it possible to

approximate expectations using sample averages, while in the later case, the DGP is known

conditional on the candidate decision rule but no real-world data exist. Because of this

difference, Maliar, Maliar, and Winant (2021) introduce a slight twist in their DL method:

at each step of the algorithm, they use the current decision rule to generate artificial data

from the economic model, and build the empirical loss function and gradient from these

simulated data. This procedure implies that the training data are resampled from different

distributions as the learning process goes on, unlike in standard DL setups. As a result,

successful learning in economic applications implies the simultaneous convergence of the

parameter vector θ to the loss-minimizing value and of the implied DGP to the ergodic

distribution. On the other hand, step (iii) needs no special change.

3. Application: The Stochastic Growth Model

In this section, we apply the DL approach to solve a basic stochastic growth model. We

use this example to illustrate in detail all the steps of the algorithm and to show how various

design choices affect the performance of the method. Of course, faster solution methods

such as local perturbation and projection are likely to outperform DL in this simple setting.9

The value of our example lies in the central place of the stochastic growth model in modern

macroeconomic theory, which makes it an attractive exposition tool. Our codes are available

from https://notes.quantecon.org/submission/65449f6b8f6a1a0016fc4544.

9See Judd (1998) and Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016) for reviews of solution

methods for macroeconomic models, including perturbation and projection.
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Algorithm 2: DL algorithm to solve economic models (Maliar, Maliar, and Winant,

2021)

input : an economic model

output: a decision rule that solves the model

step 1. initialization ;

find the equilibrium conditions of the model, i.e. the functions Z, S, and f in

equations (5), (6), and (8) ;

define the theoretical loss function Ξ(θ) in equation (12), given the equilibrium

conditions ;

define an empirical loss function

Ξ̂(θ) =
1

n

n∑
j=1

g(ωi;θ),

given a sample of artificial observations {ωi}ni=1 ;

define the set of candidate decision rules, i.e. choose the architecture of the neural

networks in the set Sϕ = {ϕ(·;θ) : θ ∈ Rp} ;

choose an initial parameter vector θ ;

choose a stopping criterion C ;

step 2. learning process ;

given the current decision rule ϕ(·;θ), simulate the model to produce artificial

data {ωi}ni=1 ;

update the parameter vector using stochastic gradient descent, as described in

Algorithm 1 ;

go to step 3 if the stopping criterion C is satisfied; otherwise return to step 2 ;

step 3. evaluation and validation ;

evaluate the accuracy of the candidate solution ϕ(·;θ?) on a new sample ;

stop if the solution is accurate; otherwise return to step 1 and update the network

architecture ;

3.1. The model. We work with the central-planner version of the model. Given an initial

capital stock k0 and an exogenous process for total factor productivity at, a benevolent

planner chooses sequences of consumption ct, capital kt+1, labor ht, and investment xt to

maximize the expected lifetime utility of a representative consumer. Formally, the planner

solves

max
{ct,kt+1,ht,xt}∞t=0

E0

∞∑
t=0

βt [η ln ct + (1− η) ln(1− ht)]
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subject to

yt = ct + xt, (13)

yt = atk
α
t h

1−α
t , (14)

kt+1 = (1− δ)kt + xt, (15)

ln at = ρ ln at−1 + εt. (16)

As usual, yt denotes total output, β ∈ (0, 1) is the subjective discount factor, η ∈ (0, 1) is

a preference weight, α ∈ (0, 1) is the capital share in production, δ ∈ (0, 1) is the depre-

ciation rate, ρ ∈ (0, 1) is the persistence of total factor productivity (TFP), and εt is an

independently and identically distributed Gaussian innovation with mean zero and variance

σ2 > 0.

The optimal choices for consumption, capital, labor, and investment must verify two

necessary conditions

(1− η)ctht = η(1− α)(1− ht)yt, (17)

1 = βEt
ct
ct+1

[
α
yt+1

kt+1

+ 1− δ
]
. (18)

The first condition characterizes the optimal consumption-leisure trade-off, while the sec-

ond condition is the Euler equation defining the optimal consumption-investment strategy.

Equations (13)-(18) form a nonlinear dynamic system of 6 equations in 6 unknowns: at, ct,

kt+1, ht, xt, yt. This generic system has no known closed-form solution, calling for the use

of numerical techniques.10

We calibrate the model at the yearly frequency, taking standard values from the literature

(Prescott, 1986; King and Rebelo, 1999). We set the capital share to α = 0.36, the discount

factor to β = 0.96, the depreciation rate to δ = 0.10, the preference weight to η = 0.33, the

persistence of TFP to ρ = 0.92, and the standard innovation of TFP shocks to σ = 0.014.

3.1.1. Writing the model in DL form. We solve the model using the DL method reviewed in

Section 2. As explained, the first step is to cast the model in suitable form. This involves

characterizing the vector of shocks εt, the vectors of exogenous and endogenous states zt
and st, the vector of controls ct, and the functions Z(·), S(·), and f(·).

With some experience in DSGE modeling, this characterization is straightforward. The

only shock is the TFP innovation, so that nε = 1 and εt = εt. This shock is associated with

a single exogenous state, the level of productivity; hence, nz = 1 and zt = at. In absence of

consumption habits or investment adjustment costs, the only endogenous state variable is

the capital stock, so that ns = 1 and st = kt. The remaining variables are controls: nc = 4

10One special case in which the model admits an exact solution is full capital depreciation, i.e. δ = 1.

Under this restriction, the solution features constant equilibrium labor and saving rate: ht = γ/(1 + γ) := h

with γ := (1− α)η/[(1− αβ)(1− η)], yt = atk
α
t h

1−α
, ct = (1− αβ)yt, kt+1 = xt = αβyt.
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and ct = (ct, ht, xt, yt)
′. Finally, the function Z(·) corresponds to the law of motion of

productivity (16), function S(·) corresponds to the capital accumulation equation (15), and

the nc = 4 entries of function f(·) corresponds to the four equilibrium conditions (13), (14),

(17), and (18).

Putting everything together, we can write the function f(·) in equation (7) as

f(zt, st, ct, zt+1, st+1, ct+1) =


yt − ct − xt
yt − atkαt h1−αt

(1− η)ctht − η(1− α)(1− ht)yt
β ct
ct+1

(
α yt+1

kt+1
+ 1− δ

)
− 1

 .
From a numerical perspective, it is useful to simplify the model further by leveraging

the various conditions linking the variables. Consider the reduced control vector ct = φt,

where φt := ct/yt is the consumption share of output. With the current stock of capital

kt and the current level of productivity at given, knowledge of ct allows one to solve for

all relevant variables: ht follows from equation (17) given φt; output yt follows from the

production function (14) given at, kt, and ht; consumption follows from knowing φt and yt;

investment xt follows from the resource constraint (13); next period capital kt+1 follows from

the accumulation equation (15). In addition, as discussed below, the fact that the unique

element of ct belongs to the (0, 1) interval conveniently guides the choice of the activation

function for the final layer of the network.

The remaining equilibrium condition that needs to be verified is the Euler equation (18),

resulting in the alternative function f(·),

f(zt, st, ct, zt+1, st+1, ct+1) = β
ct
ct+1

(
α
yt+1

kt+1

+ 1− δ
)
− 1, (19)

where we keep implicit that ct and kt+1 are functions of (zt, st, ct), while ct+1 and yt+1 are

functions of (zt+1, st+1, ct+1).

Given this expression for f(·) and a candidate policy function ct = ϕ(zt, st;θ), it is

straightforward to form the DL objective function (12), which takes the form

Ξ(θ) = Eωf1(ω)f2(ω), (20)

where θ is the vector of parameters of the neural network, ω := (z, s, ε1, ε2) is the random

vector bundling the states and the two sets of independent shocks, and fi(·) refers to function

f(·) evaluated at shock εi.

3.1.2. Network architecture and evaluation. The second step is to choose the architecture of

the neural network. In line with our pedagogical purpose, we consider many possible designs

and explore how the various architecture choices affect the performance of the DL approach.

To be specific:
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• We vary the depth by considering networks with one and two hidden layers. Given

the simplicity of the model, it would be excessive to try deeper architectures.11

• We vary the width by considering networks with 4 nodes, 16 nodes, and 32 nodes.

• We vary the activation function for the input and hidden layers, considering hyper-

bolic tangent, ReLU, and sigmoid functions. In all cases, we use a sigmoid function

for the output layer to ensure that the value of φt lies in (0, 1), as implied by the

model.

• We vary the number of observations n′ included in the mini-batches, considering

n′ = 1, 10, 100, and 1, 000.

• We vary the learning algorithm, considering basic stochastic gradient descent (SGD)

and the Adam algorithm of Kingma and Ba (2017).12

• We vary the learning rate λ, considering four values between 0.1 and 0.0001 for Adam

and making the appropriate adjustment for SGD.13

Together, these variations represent 576 different pairs of architecture and learning algo-

rithm14. In all cases, we train the network using 5, 000 gradient iterations and measure

performance at every step, which allows us to assess how much training is required to solve

the model.

We evaluate the accuracy of the neural-network solutions using the unit-free Euler equation

error of Judd and Guu (1997) and Barillas and Fernández-Villaverde (2007), defined as

EEE(a, k) = 1−
{
βE

[
c

c′

(
α
y′

k′
+ 1− δ

)]}−1
,

with φ = ϕ(a, k;θ), h = η(1 − α)/[η(1 − α) + (1 − η)φ], c = φakαh1−α, k′ = (1 − δ)k +

(1− φ)akαh1−α, a′ = exp[ρ ln(a) + ε′], φ′ = ϕ(a′, k′;θ), h′ = η(1− α)/[η(1− α) + (1− η)φ′],

y′ = a′(k′)α(h′)1−α, and c′ = φ′y′. As noted above, all model equations are exactly verified

conditional on φ, except for the Euler equation. This is why the EEE statistic provides

a summary accuracy measure for the DL solution. In addition, it has a simple economic

11In general, economic models are simple enough that deep architectures would be excessively complex.

For instance, both Maliar, Maliar, and Winant (2021) and Azinovic, Gaegauf, and Scheidegger (2022) use

networks with only two hidden layers to solve complex models with heterogeneous agents.
12As explained in Algorithm 1, SGD updates the value of the parameter vector θ based on the current

value of the gradient and a fixed learning rate λ. On the other hand, Adam averages the gradient over

several iterations to create momentum and automatically adjusts the learning rate along the process. Both

elements tend to speed up convergence and avoid local minima compared to SGD.
13The endogenous adjustment of the learning rate in Adam makes it difficult to compare the values of λ

in the two algorithms. We make the comparison formal in Appendix A, where we explain how we fix the

learning rate for SGD based on the Adam value.
14These represent 2 choices for the number of layers x 3 choices for the number of nodes x 3 choices for

the activation function x 4 choices for the number of observations n′ x 4 choices for the learning rate x 2

choices for the training algorithm.
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interpretation: a value of 0.01 implies that agents make a mistake of $1 for every $100 spent,

a value of 0.001 implies a mistake of $1 for every $1,000 spent, and so on.

When computing the loss function Ξ(θ) and the Euler equation error EEE(a, k), we

sample productivity ln(a) from its ergodic distribution N [0, σ2/(1− ρ2)] and capital k from

a normal distribution N (µk, σ
2
k), where µk and σ2

k denote the average and the standard

deviation of k implied by the first-order approximation of the model.15

To initialize the vector of parameters of the neural network θ, we use the closed-form solu-

tion that the model admits when δ = 1, i.e. with full capital depreciation (see Footnote 10).

In practice, this solution is φ = 1− αβ, and we run an initial training step to have the net-

work learn this value for various productivity-capital draws (a, k). An alternative possibility

would be to use the standard first-order approximation of the policy rule to initialize θ.

3.1.3. Results. This section presents our main results.16

We start by evaluating how the accuracy of the DL solution changes with the network

architecture and the training procedure. To do so, we characterize the distributions of the

Euler equation errors conditional on the various design choices. We report the results in

Figures 2 and 3, which respectively focus on networks trained by SGD and by Adam.

In each figure, the first row considers the role of the network depth, the second row deals

with the network width, the third row focuses on the learning rate, and the fourth row looks

at the activation function. Each row plots the average Euler equation error E[|EEE(a, k)|]
as a function of the number of observations n′ used to train the network, conditional on the

relevant design characteristic. As commonly done, we use a logarithmic scale to facilitate

the interpretation of the Euler equation errors.

Looking at the two figures, a first result is that Adam training tends to outperform SGD

training, leading to more accurate solutions on average. The superiority of Adam over

SGD, which is well documented in the DL literature (Kingma and Ba, 2017), originates

from the various adjustments to gradient descent implemented in the algorithm. A second

advantage of Adam over SGD is also clear in the charts, namely the fact that increasing the

number of draws n′ used to compute the gradient during each training step leads to a much

larger accuracy improvement with Adam training than with SGD training. Intuitively, using

more information at each step improves the accuracy of each gradient estimate, accelerating

descent and helping the training process converge to a better solution.

15We checked ex post that these bounds provide good coverage of the ergodic set, based on simulations

from the DL solution. For more complex models, an alternative would be to add a loop to the algorithm in

order to draw the endogenous state variable from its simulated ergodic distribution, while checking for the

convergence of the distribution. This would obviously slow down the execution time.
16We run our simulations using Pytorch and Python version 3.10.12. Pytorch is the machine learning

framework used by Meta. The computer has a 8 cores, an Intel Xeon CPU 2.20GHz, and a 32GB RAM.
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Figure 2. Design choices and accuracy of DL solution — SGD training
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Notes. Each row presents the average of the Euler equation error E[|EEE(a, k)|] across designs,

conditional on a given architecture: rows vary the number of hidden layers (first row), the number

of nodes in the hidden layer (second row), the learning rate (third row), and the activation function

in the input and hidden layers (fourth row). All rows plot the error as a function of the number of

observations n′ per mini-batch.
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Figure 3. Design choices and accuracy of DL solution — Adam training

3e−04

1e−03

3e−03

1e−02

3e−02

1 10 100 1000
n'

A
ve

ra
ge

 E
E

E Nb. hidden
 layers

1

2

3e−04

1e−03

3e−03

1e−02

3e−02

1 10 100 1000
n'

A
ve

ra
ge

 E
E

E Nb. nodes

4

16

32

3e−04

1e−03

3e−03

1e−02

3e−02

1 10 100 1000
n'

A
ve

ra
ge

 E
E

E

Learning
 rate

1e−04

0.001

0.01

0.1

3e−04

1e−03

3e−03

1e−02

3e−02

1 10 100 1000
n'

A
ve

ra
ge

 E
E

E Activation
 function

ReLU

Sigmoid

Tanh

Notes. Each row presents the average of the Euler equation error E[|EEE(a, k)|] across designs,

conditional on a given architecture: rows vary the number of hidden layers (first row), the number

of nodes in the hidden layer (second row), the learning rate (third row), and the activation function

in the input and hidden layers (fourth row). All rows plot the error as a function of the number of

observations n′ per mini-batch.
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The top row in each figure shows that neural networks with one or two hidden layers have

similar performance, even though networks with a single layer have a slight edge, especially

when trained by SGD. The second row shows that performance is also quite similar across

networks of different width. Depending on the training algorithm, networks with 16 or 32

nodes have the highest accuracy, but the improvement with respect to the simpler networks

with only 4 nodes is small. Overall, these findings indicate that, given the simplicity of the

economic model we consider, a simple architecture performs well and is thus preferable.

The third row in each figure highlights the importance of the learning rate for accurate DL

solutions. In general, too high a learning rate might lead to convergence failures, for instance

repeated coefficient oscillations, while too low a learning rate prevents efficient coefficient

updates. We can see such effects in Figure 2, which shows that SGD training performs

poorly when the learning rate is low, but improves with intermediate rates. We confirmed

this insight by trying lower learning rates for SGD, ranging from 0.1 to 0.0001. Such small

values lead to essentially impossible learning and very inaccurate solutions. Similarly, we see

in Figure 3 that Adam training works worst for the high and low learning rates and best for

intermediate values. Thus, even in this simple example, a careful selection of the learning

rate is crucial for obtaining accurate DL solutions.

The fourth row in each figure considers the role of the activation functions used in the input

and hidden layers of the networks. With SGD, the ReLU function clearly outperforms the

sigmoid and hyperbolic tangent alternatives, generating smaller average approximation errors

and gaining more from the use of extra training information. With Adam, the performance of

the three functions we consider is broadly similar, with a small edge for the sigmoid function

when a lot of draws are used to compute the gradient at each step. Thus, the choice of

the activation function matters for accuracy, with the best function depending on other

hyperparameter choices such as the optimizer and the number of draws used in training.

As alluded to above, design choices also affect computing time. To get an idea of the

implied trade-off between accuracy and speed, Figures 4 and 5 report the computing time

required to perform 5, 000 parameter updates by gradient descent under the various design

choices discussed before. Unsurprisingly, all panels show that increasing the number of

draws n′ used for each gradient evaluation leads to an increase in computing time. Average

computing times are also broadly similar between SGD and Adam training, which favors the

latter algorithm since it generally leads to more accurate solutions.

Also expected is the fact that more complex architectures, such as those featuring one

additional hidden layer or more nodes per layer, require more time than simpler designs.

Interestingly, the choice of the activation function does not seem to affect computing time

in this simple setup, although the derivative of the ReLU function can be computed more

efficiently than the derivative of the alternative functions we consider. Of course, the value
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Figure 4. Design choices and computing time — SGD training
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Notes. Each row presents the average of the computing time required to perform 5, 000 parameter

updates across designs, conditional on a given architecture: rows vary the number of hidden layers

(first row), the number of nodes in the hidden layer (second row), the learning rate (third row), and

the activation function in the input and hidden layers (fourth row). All rows plot the computing time

as a function of the number of observations n′ per mini-batch.
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Figure 5. Design choices and computing time — Adam training
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Notes. Each row presents the average of the computing time required to perform 5, 000 parameter

updates across designs, conditional on a given architecture: rows vary the number of hidden layers

(first row), the number of nodes in the hidden layer (second row), the learning rate (third row), and

the activation function in the input and hidden layers (fourth row). All rows plot the computing time

as a function of the number of observations n′ per mini-batch.
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of the learning rate has no impact on computation time, although it obviously affects the

accuracy of the solution.

We can summarize our observations from Figures 2 to 5 as follows:

• The Adam algorithm leads to more accurate solutions than SGD without notable

difference in computing time.

• Most economic models are simple enough that an architecture with two hidden layers

is sufficient.

• The number of nodes should depend on the structure of model. Four nodes are

enough for the simple stochastic growth model, but more complex environments may

require wider networks. For instance, Maliar, Maliar, and Winant (2021) use 26 nodes

to solve a Krusell-Smith model and Azinovic, Gaegauf, and Scheidegger (2022) use

210 nodes to solve a large OLG model.

• The choice of the learning rate is crucial: too low a rate prevents an efficient update

of the parameter vector while too high a rate may lead to convergence issues.

• In our application, the choice of the activation function has little impact on the accu-

racy of the approximation. In larger DL applications, the ReLU activation function

may be preferable due to its good gradient properties.

• The number of observations n′ should not be too low but, above a certain level, there

is a trade-off between accuracy and computation time.

• In the context of our simple stochastic growth model, the architecture leading to the

most accurate solution features a single hidden layers with 16 nodes and a sigmoid

activation function, trained using the Adam algorithm with a learning rate of 10−3

and 1,000 observations for each evaluation of the gradient.

Of course, accuracy improvements are not uniform over time because gradient-based meth-

ods tend to yield strong improvement during the first iterations, when the slope of the ob-

jective function is most pronounced, and smaller improvement after a while, when the slope

flattens near the optimum. This pattern implies that the speed-accuracy trade-off changes

with the number of gradient iterations, as shown in Figure 6 in the context of our exam-

ple. At the start of the training process, updates of the parameter vector lead to a sharp

decrease in losses, which signals strong improvement in the accuracy of the DL solution.17

As learning progresses, further gradient iterations bring less useful information and the loss

function slowly stabilizes. In our example, most of the learning occurs during the first 1,000

or 2,000 iterations, with the additional steps providing only modest accuracy gains.

Finally, we compare the DL solution to the basic first-order linear approximation of the

model. To do so, we focus on the architecture leading to the most accurate solution, described

above. We present the results in Figure 7. The top panel reports the policy functions for

17The loss function is Ξ(θ), defined by equation (20) and computed at every gradient iteration. In contrast,

the Euler equation error reported in Figures 2 and 3 is only computed after the final iteration.
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Figure 6. Trade-off between accuracy and speed during training
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Figure 7. Comparison of the DL and first-order perturbation solutions
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Notes. The top panel reports the policy functions for consumption ct and hours worked ht in terms of

current capital kt, when productivity is at its deterministic steady-state level at = 1. In the top panel,

the vertical line represents the non-stochastic steady state value for kt, while the shaded area represents

the 95% confidence interval for kt. The solid red line presents the first-order linear approximation of the

model, while the dotted blue line presents the DL solution. The bottom panel reports the distribution

of the average Euler equation errors, calculated by integrating aggregate productivity using Gaussian

quadrature. The dispersion of Euler equation errors for the DL solution comes from the randomness

introduced by the learning process, as neural networks with identical architecture still present different

weights after training on a finite sample of draws. To take this uncertainty into account, we train

10 different networks with the same architecture and we report the distribution of Euler equation

errors for the DL solution (10th, 50th, and 90th percentiles).
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consumption ct and hours worked ht in terms of current capital kt, when productivity is at

its deterministic steady-state level at = 1. We consider a wide range of capital values, which

encompasses the ergodic set of the model. The bottom panel reports the distribution of the

average Euler equation errors associated with the DL solution.

By definition, the first-order approximation yields linear policy rules. There is a little more

curvature in the DL policy rules, which are slightly concave for consumption and slightly

convex for hours worked. This curvature reflects the economic forces at play in the model:

due to decreasing returns to capital, the incentives to save and work are relatively large when

capital is low and relatively small when capital is large. Nevertheless, it is clear that the DL

solution almost coincides with the linear approximation over most of the state space, which

signals the lack of non-linearity in the frictionless stochastic growth model.

Another way to compare the solutions is to look at their accuracy across the state space.

The linear approximation yields small errors close to the deterministic steady-state of the

model and larger errors away from it. This property reflects the local nature of the linear

solution, which has high accuracy near the approximation point but whose performance

deteriorate away from it. Instead, the approximation error associated with the DL solution

is flatter across the state space: it is larger than that of the linear approximation by an

order of magnitude near the steady state, but smaller for values of capital more than one-

standard-deviation away from kss. This is in line with the global nature of DL approach,

which aims at high accuracy across the whole relevant state space.

4. Conclusion

This report provided an introduction to solving economic models using deep learning tech-

niques. We offered a simple and rigorous overview of deep learning methods and illustrated

their applicability to the study of economic models by focusing on the simple stochastic

growth model. Finally, we emphasized how various choices related to the design of the deep

learning solution affect the accuracy of the results, providing some guidance for potential

users of the method.
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Appendix A. Learning Algorithms

This appendix provides a more formal comparison between SGD and the Adam learning

algorithm. It also explains how we set the learning rate for SGD based on the Adam value.

A.1. SGD algorithm. As noted in Algorithm 1, the updating rule for SGD is

θi+1 = θi − λSGD∇θL(θi), (21)

where λSGD is the learning rate and ∇θL(θi) denotes the gradient of loss function evaluated

at the current parameter guess θi.

A.2. Adam algorithm. As described in Kingma and Ba (2017), the updating rule for

Adam is more complex:

θi+1 = θi − λAdam
√

1− βt2
1− βt1

mt√
vt + ε

,

where λAdam is the learning rate, mt is a moving average of the gradient, vt is a moving

average of squared gradient elements, and ε = 10−8 is a small number. The operations on

vectors, i.e. the square rooting of vt and the ratio between mt and
√

vt + ε, are performed

element-wise, resulting in parameter-specific effective learning rates. The laws of motion of

mt and vt verify mt = β1mt−1 + (1 − β1)∇θL(θi) and vt = β2vt−1 + (1 − β2) [∇θL(θi)]
2,

where the square of the gradient is applied element-wise and where β1 and β2 are coefficients

in (0, 1).

Expanding the updating rule leads to

θi+1 = θi − λAdam
√

1− βt2
1− βt1

β1mt−1√
vt + ε︸ ︷︷ ︸

momentum

−λAdam
√

1− βt2
1− βt1

(1− β1)√
vt + ε

∇θL(θi)︸ ︷︷ ︸
update using current gradient

.

Omitting the slow-moving momentum part, the expression simplifies to

θi+1 = θi − λ∇θL(θi), (22)
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with λ = λAdam

√
1−βt2

1−βt1
(1−β1)√
vt+ε

. As noted above, λ is a vector of parameter-specific effective

learning rates.

Comparing equations (21) and (22) reveals that setting λSGD = λ, where the bar denotes

the average across vector entries, yields a SGD update of similar order as the Adam update.

In our application, we consider learning rates between 10−4 and 10−1 for Adam and we find

that the average across entries of the weight vector λ is close to 103 during the training of the

model. These elements imply that learning rates between 10−1 and 102 for SGD approximate

well the effective Adam rates.
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