
CAHIER D’ÉTUDES
WORKING PAPER

N° 196

SOLVING ECONOMIC MODELS WITH NEURAL NETWORKS
WITHOUT BACKPROPAGATION

JULIEN PASCAL

APRIL 2025

SOLVING ECONOMIC MODELS WITH NEURAL NETWORKS
WITHOUT BACKPROPAGATION

JULIEN PASCAL

Abstract. This paper presents a novel method to solve high-dimensional economic

models using neural networks when the exact calculation of the gradient by backprop-

agation is impractical or inapplicable. This method relies on the gradient-free bias-

corrected Monte Carlo (bc-MC) operator, which constitutes, under certain conditions,

an asymptotically unbiased estimator of the gradient of the loss function. This method is

well-suited for high-dimensional models, as it requires only two evaluations of a residual

function to approximate the gradient of the loss function, regardless of the model di-

mension. I demonstrate that the gradient-free bias-corrected Monte Carlo operator has

appealing properties as long as the economic model satisfies Lipschitz continuity. This

makes the method particularly attractive in situations involving non-differentiable loss

functions. I demonstrate the broad applicability of the gradient-free bc-MC operator by

solving large-scale overlapping generations (OLG) models with aggregate uncertainty,

including scenarios involving borrowing constraints that introduce non-differentiability

in household optimization problems.

Keywords: Dynamic Programming, Neural Networks, Machine Learning, Monte Carlo,

Overlapping Generations, Occasionally Binding Constraints.

JEL: C45, C61, C63, C68, E32, E37.

March 2025. Julien Pascal: Banque centrale du Luxembourg, Département Économie et Recherche,

2 boulevard Royal, L-2983 Luxembourg (julien.pascal@bcl.lu). I thank my BCL colleagues for their

useful comments. This paper should not be reported as representing the views of the BCL or the

Eurosystem. The views expressed are those of the author and may not be shared by other research staff

or policymakers in the BCL or the Eurosystem.

1

2

Résumé non technique

Depuis mars 2023, le Conseil des gouverneurs de la BCE prend ses décisions rela-

tives aux taux directeurs en fonction de trois critères : son évaluation des perspectives

d’inflation, la dynamique de l’inflation sous-jacente et la force de transmission de la poli-

tique monétaire. Concernant cette dernière, dans son discours d’août 2024 à Jackson

Hole, l’économiste en chef de la Banque centrale européenne, Philip Lane, a souligné

que la transmission de la politique monétaire varie en fonction de l’hétérogénéité des

ménages, des entreprises et des banques. La prise en compte de cette hétérogénéité aug-

mente considérablement la dimension des modèles économiques, ce qui représente un défi

pour leur analyse.

D’autre part, les banques centrales se demandent également quel impact le vieillisse-

ment démographique aura sur la soutenabilité des finances publiques, avec de possibles

répercussions sur la transmission de la politique monétaire. La transition démographique

est souvent analysée via des modèles à générations imbriquées (dits “OLG”, de l’anglais

“overlapping generations”). Par exemple, la Banque centrale du Luxembourg a développé

le modèle “LOLA” pour analyser l’évolution de l’économie luxembourgeoise à long terme.

Dans ce type de modèles, la dimension du problème est proportionnelle au nombre

de générations étudiées, ce qui entrâıne un grand nombre de dimensions lorsque les

catégories d’âge sont définies sur une base annuelle ou trimestrielle.

Une littérature croissante explique comment résoudre des modèles économiques de grande

dimension à l’aide des technologies d’apprentissage automatique, qui sont à l’origine des

succès récents d’agents conversationnels tels que ChatGPT. Ce papier, qui est essen-

tiellement de nature technique, contribue à cette littérature en développant une nouvelle

méthode permettant notamment l’analyse de modèles de grande dimension comportant

des changements de régime. De tels changements de régime se produisent lorsque cer-

tains ménages se trouvent soudainement confrontés à des contraintes de crédit limitant

leur consommation ou leur investissement au cours du cycle économique.

3

1. Introduction

Many important economic questions require high-dimensional economic models. For

instance, the Heterogeneous Agent New Keynesian (HANK) literature finds that the dis-

tribution of wealth affects the strength of monetary policy (Kaplan, Moll, and Violante,

2018). This represents a challenge, as the wealth distribution is an infinite-dimensional

and time-varying object. Another example is the design of optimal fiscal and mon-

etary policies in a monetary union, since this requires monitoring economic activity

across the N member countries (Farhi and Werning, 2017). A third example occurs in

overlapping generations (OLG) models, such as those used by Marchiori and Pierrard

(2015) to analyze how life-cycle dynamics can shape the long-term dynamics of Lux-

embourg’s economy. In OLG models, tracking the wealth and employment status of

each age group requires a high-dimensional state vector. These economic models are

often solved by linearization around a certain point, typically a steady state with no

aggregate uncertainty. Linearization methods have strong theoretical foundations (see

for instance Schmitt-Grohé and Uribe (2004) and Fernández-Villaverde, Rubio-Ramı́rez,

and Schorfheide (2016)) and are relatively easy to implement.1 However, when the

non-stochastic steady state is ill-defined, or when linearization results in undesirable fea-

tures for the problem under consideration (e.g., certainty equivalence), alternative global

methods may be preferable.

This paper belongs to the literature that develops global methods to solve dynamic pro-

gramming problems originating from economic models, in particular the body of work

that uses machine learning techniques. Large scale economic models are increasingly

solved using tools from the machine learning literature, especially neural networks in the

form of multilayer perceptrons (MLPs).2 In particular, Azinovic, Gaegauf, and Schei-

degger (2022) parametrize the policy functions and/or the value functions arising from

economic optimization problems with an MLP, while using Monte Carlo integration to

approximate expectations with respect to the state vector. They demonstrate that this

approach can successfully find numerical solutions to high-dimensional economic models.

For instance, Folini et al. (2024) use this methodology to analyze climate change miti-

gation strategies within an economic model interacting with a climate block. However,

1Especially when using a linearization toolbox such as Dynare (Adjemian et al., 2011).
2An introduction to deep learning techniques in economics with an application to DSGE models is

available in Beck et al. (2024). See also Fernández-Villaverde, Nuño, and Perla (2024).

4

in the method developed by Azinovic, Gaegauf, and Scheidegger (2022), uncertainty is

modeled using low-dimensional discrete Markov chains, allowing the exact evaluation

of expectations with respect to innovation vectors. Thus, this approach circumvents

the issue that most economic models are generally expressed as stochastic functional

equations involving two nested expectations: Es

[
Eε

(
f(s, ε)

)2]
= 0, where s denotes

the state vector and ε denotes the innovation vector. In general, the expectation with

respect to the innovation vector cannot be evaluated exactly, for instance because ε has

continuous support. In this case, one solution is to also use Monte Carlo integration

for the expectation with respect to the innovation vector. However, an efficient Monte

Carlo integration scheme would require approximating a single integral Es,ε

[(
f(s, ε)

)2]
,

which unfortunately is not equal to Es

[
Eε

(
f(s, ε)

)2]
, because of Jensen’s inequality.

In independent work, Maliar, Maliar, and Winant (2021) develop an approach that can

successfully address this issue. In a nutshell, their approach relies on working with two

independent realizations of each innovation vector, denoted by ε1 and ε2. Independence

of these two realizations allows the authors to express the two nested expectations with

a single unnested expectation Es,ε1,ε2

[
f(s, ε1)f(s, ε2)

]
, which can then be efficiently

approximated using Monte Carlo integration. This approach has been used to study

discrete labor choices in a model à la Krusell-Smith (Maliar and Maliar, 2022). Pascal

(2024) demonstrates that this approach can be generalized by using N independent

realizations of the innovation vector, where the optimal value of N depends on the

model under scrutiny. The author also shows that proceeding in this way can also be

interpreted as imposing a bias correction to a naive Monte Carlo integration applied

to the nested formula Es

[
Eε

(
f(s, ε)

)2]
, hence the name bias-corrected Monte Carlo

(bc-MC) operator. The bc-MC operator is, under certain conditions on the primitives

of the model, the best way to proceed, as it is the minimum-variance unbiased estimator

(MVUE) of the nested expectation formula. Given this optimality result, this paper

focuses on the bc-MC operator and its gradient-free extension.

The present paper extends the analysis of the bc-MC operator to the case in which gradi-

ents cannot be trivially calculated using backpropagation. Neural networks, in particular

MLPs, are generally trained by gradient descent or its variants, such as the Adam algo-

rithm. Thus, the gradient of the loss function characterizing an economic model must

be known. So far, the existing economic literature assumes that the gradient of the loss

5

function can be easily calculated. This is certainly the case when economic models are

implemented using modern software compatible with automatic differentiation, such as

Pytorch (Paszke et al., 2017) or Tensorflow (Abadi et al., 2015), as the backpropaga-

tion algorithm can then be used to get an exact value of the gradient very efficiently.

Indeed, when using the backpropagation algorithm to calculate the gradient of a scalar-

valued loss function, the runtime cost is at most four times the cost of evaluating the

loss function itself. However, there are at least three reasons why one might prefer to

train neural networks without backpropagation. First, if a legacy implementation of

an economic model already exists, the time required to translate the existing codebase

into software compatible with automatic differentiation might be prohibitive. Second,

when using backpropagation, all intermediate computations must be stored in memory,

which may not be possible in some extreme cases because of memory limitations. Third,

extending backpropagation to non-smooth loss functions is non-trivial and significantly

more computationally intensive than in the smooth case. This is why alternatives to

backpropagation have been developed in this context.

The first alternative that may come to mind, which predates the invention of backprop-

agation, is the deterministic finite difference method. Because the gradient of a function

is simply a vector of partial derivatives, one may be tempted to calculate each partial de-

rivative using a forward difference scheme, requiring n+1 evaluations of the loss function

if the neural network has n parameters. However, this approach is impractical, as neural

networks often have thousands, if not millions of parameters. For this reason, this paper

focuses on randomized directional derivative estimators.3 As the name suggests, these

involve using the directional derivative, which can be efficiently approximated even when

n is large. When the directional derivative is combined with the idea of random sampling

from a symmetric distribution around the origin, one obtains an unbiased estimator of

the gradient. These ideas can be applied to the loss functions characterizing the solutions

of economic models, leading to the gradient-free bc-MC operator. While this method is

“gradient-free” because no exact value of the gradient is ever calculated during training,

it remains gradient-based in spirit. When the exact value of the directional derivative is

3Alternatively, these are called “randomized finite difference methods” in Scheinberg (2022) or “ran-

dom derivative-free methods” in Nesterov and Spokoiny (2017).

6

used, the expected update of the parameter vector is the same as the one obtained using

the gradient of the loss function.

In this paper, I make three main contributions to the existing literature. First, I present

a new methodology, based on the gradient-free bc-MC operator, which can be used to

find global numerical solutions to economic models when backpropagation is not feasible

or not applicable. This methodology, relying on randomized directional derivative esti-

mators, is particularly relevant when the solution of an economic model is characterized

by time-invariant functions, for instance, Bellman or policy functions, that are param-

eterized by an MLP. The gradient-free bc-MC operator requires only two evaluations

of a residual function characterizing the solution of an economic model, regardless of

the number of parameters in the underlying neural network. Additionally, intermediate

calculations do not need to be stored in memory, so this method remains applicable even

when deep neural networks are used or when the residual function is slow to evaluate

and memory-intensive. The gradient-free bc-MC operator is also applicable to loss func-

tions with non-differentiabilities, which often occur because economic agents are facing

inequality constraints, such as a borrowing constraint. Differentiability is replaced by

the weaker requirement of Lipschitz continuity. I give a set of conditions under which the

gradient-free bc-MC operator inherits Lipschitz continuity from more primitive “resid-

ual functions”, which are usually easier to analyze. For differentiable loss functions, the

gradient-free bc-MC operator is asymptotically equivalent to its gradient-based counter-

part. Second, I demonstrate the broad applicability of the gradient-free bc-MC operator

by solving two large-scale OLG models with aggregate uncertainty. In the first nu-

merical experiment, households may freely borrow to smooth consumption, but in the

second one, households face an exogenous borrowing constraint, which introduces a non-

differentiability in households’ optimization problems. Third, inspired by earlier works

using the Parameterized Expectation Algorithm (PEA), I present an efficient way to

solve models with occasionally binding constraints (OBCs) using MLPs, by treating La-

grange multipliers as variables that can be adjusted ex post. I also note how the bc-MC

operator and the PEA are intimately linked. In some sense, the PEA can be seen as a

special case and an asymptotically accurate approximation to the bc-MC operator.

This paper proceeds as follows. I first discuss how the gradient-free bc-MC operator

relates to existing computational methods in economics. I then formally define the

7

gradient-free bc-MC operator before stating its key properties. In particular, I provide

conditions under which the gradient-free bc-MC operator is smooth and unbiased. The

next section illustrates the performance of the gradient-free bc-MC operator. The links

between the bc-MC operator and PEA are then discussed within the context of OLG

models with aggregate uncertainty and OBCs. The final section concludes.

2. Related literature

This paper contributes to the literature on global methods for solving economic models

with high-dimensional input or output spaces. When strong non-linearities are present,

some authors have suggested using global solution algorithms for dynamic programming

problems, such as value function iteration (VFI) or time iteration (TI), combined with

grid constructions that can scale to high dimensional input spaces. In particular, Krueger

and Kubler (2004) and Judd et al. (2014) argue in favor of using sparse grids, based on

the seminal work of Smolyak (1963). Brumm and Scheidegger (2017) champion the use

of adaptive sparse grids that selectively add grid points in areas where the value function

or optimal decision rules exhibit high curvature or sharp changes.

This paper is more closely related to the body of work that applies machine learning tools

to solve economic models. While some authors rely on Gaussian processes (Scheidegger

and Bilionis, 2019), there has been a growing interest in the use of neural networks, gen-

erally in the form of multilayer perceptrons (MLPs). For instance, Fernández-Villaverde,

Hurtado, and Nuño (2023) use MLPs to approximate perceived laws of motion, rather

than linear forecasting rules, as is more commonly the case when using the Krusell-Smith

algorithm. In a discrete-time setting, Maliar, Maliar, and Winant (2021), Azinovic, Gae-

gauf, and Scheidegger (2022) and Pascal (2024) develop methods to approximate solu-

tions to economic models where the policy or value functions are parameterized by neural

networks. Duarte, Duarte, and Silva (2024) explore similar ideas in a continuous time

setting. All these papers use the backpropagation algorithm (Rumelhart, Hinton, and

Williams, 1986) to update the MLP parameter vector. Hence, they implicitly assume an

implementation compatible with automatic differentiation, as well as differentiability of

the loss function characterizing the economic model. This paper contributes to this liter-

ature by developing a methodology that does not require these two conditions to be met.

To achieve this, I use the randomized directional derivative estimators, first analyzed in

the optimization mathematical literature (see, for instance, Nesterov and Spokoiny, 2017

8

and Berahas et al., 2022) and already used in the machine learning literature to build

predictive models without relying on the backpropagation algorithm (Baydin et al., 2022,

Silver et al., 2022). To the best of my knowledge, this is the first use of these estimators

in the context of economic modeling.

Interestingly, the neural network-based methods mentioned earlier resemble the param-

eterized expectations algorithm (PEA) proposed much earlier by Den Haan and Marcet

(1990). In the PEA, expectations are parameterized by a polynomial function, and

Monte Carlo methods are also used to sample from the state space. The parameter vec-

tor characterizing the polynomial function is fitted using least squares, while the updated

parameter vector is used to generate a new sample of endogenous variables. This pro-

cess is repeated until convergence of the parameter vector. In practical applications, the

least squares stage might suffer from multicollinearity. To avoid this, Valaitis and Villa

(2024) suggest using MLPs in the PEA context, rather than relying on hand-selected

polynomials. The same idea was explored earlier by Duffy and McNelis (2001), who also

proposed to use neural networks as a better tool for PEA. These authors also favored

genetic algorithms over gradient-based approaches for learning the MLP parameter vec-

tor. Because genetic algorithms do not rely on gradient information to search for optimal

solutions, they can effectively handle functions that are non-differentiable. In this paper,

I also propose a new computational method that can handle non-differentiable loss func-

tions. However, instead of relying on minimization methods that do not use gradient

information, which are often slow and computationally intensive, I propose a gradient-

based learning method, where the gradient is computed using a smoothed version of the

original loss function. In other words, I handle the possibility of non-differentiable points

at the level of the loss function, rather than at the level of the minimization algorithm,

as in Duffy and McNelis (2001).

This work also relates to the PEA literature in the way it approaches solving economic

models with occasionally binding constraints (OBCs). Economic models with OBCs

generally result in systems of Karush–Kuhn–Tucker (KKT) conditions. For an economic

model where households face a borrowing constraint, this typically results in Euler equa-

tions that are augmented with Lagrange multipliers and rely on additional consistency

conditions. One approach for numerically solving economic models with OBCs is to

search for a function f(·) that outputs consumption functions and Lagrange multipliers

9

that jointly solve the KKT conditions. This de facto doubles the size of the output vector

that one must calculate, compared to similar models without OBCs. In this paper, I

explore a less computationally intensive alternative, inspired by earlier works using the

PEA. In particular, when dealing with models with borrowing or investment constraints,

Marcet and Lorenzoni (2001) observe that Lagrange multipliers may be treated as resid-

ual variables that can be adjusted within the period. Christiano and Fisher (2000) found

that this feature is the main reason why the PEA outperformed other global algorithms,

when benchmarking different solution methods for solving models with OBCs.

In this paper, I show that the bc-MC operator can easily accommodate such a parame-

terized expectation approach, by decomposing the residual function into two parts, and

similarly treating Lagrange multipliers as residual variables that are adjusted ex-post.

In fact, I show that the bc-MC operator leads to a generalization of the PEA. Both

methods can be seen as relying on realizations of a random vector next period, in or-

der to approximate a conditional expectation. However, for each realization of a state

vector, baseline PEA typically uses a single draw of the innovation vector, while the

“bc-MC-PEA” operator uses N independent draws. When further imposing linearity

on the function predicting the value of the conditional expectation, and after using an

approximation that becomes correct in the neighborhood of a solution, the gradient of

the bc-MC operator leads to the usual PEA procedure of using the OLS solution of a

linear regression of a target variable on a relevant state vector. However, with the “bc-

MC-PEA” operator, the target variable is based on an average of N draws, rather than

on a single draw. Said differently, baseline PEA can be interpreted as a special case of

the more general bc-MC operator. To the best of my knowledge, these are new findings

in the computational economics literature.

3. The gradient-free bias-corrected Monte Carlo Operator

In this section, I first present the directional derivative estimator, which provides an

unbiased estimator for the gradient of a function (under certain conditions). Hence, it

can be used to minimize functions using (stochastic) gradient descent. For the directional

derivative estimator to be well-behaved, the objective function must only be Lipschitz

continuous, which is a weaker condition than everywhere-differentiability. I then focus

on minimization problems arising from economic problems, which often result in nested

expectations. When combining Monte Carlo integration and MLPs, such minimization

10

problems can be solved using the bc-MC operator. I show that the directional derivative

and the bc-MC operators can be combined to form a gradient-free bc-MC operator, which

can be used to find approximate solutions of economic models, without backpropagation.

I give conditions under which this estimator inherits Lipschitz continuity from more

primitive “residual” functions, characterizing the solutions of an economic model (for

instance, Euler equations and budget constraints). I also show that this gradient-free

bc-MC operator is asymptotically equivalent to its gradient-based counterpart, when the

“residual” functions are everywhere-differentiable. In that sense, the former can be seen

as an extension of the latter to a less-smooth case.

3.1. Randomized directional derivative estimator. Many economic models can be

formulated as an optimization problem of the form

θ∗ = arg min
θ∈Rn

f(θ) (1)

where θ is a vector parametrizing policy or value functions that characterize the economic

model under consideration. The function f : Rn → R is model-specific and might be

for instance involve an Euler or a Bellman equation, as illustrated in the next section.

A popular algorithm to find a numerical solution to the minimization problem (1) is

the gradient descent algorithm, which uses the information contained in the gradient, to

iteratively refine a current guess denoted by θt, using the updating rule

θt+1 = θt − γt∇f(θt) (2)

where γt is a parameter called the learning rate and ∇f(θi) denotes the gradient for the

function f evaluated at the current guess θt. Because ∇f(θt) is the direction of steepest

ascent, the algorithm updates θt by moving in the opposite direction, ensuring descent

at each step. Thus, under sufficient smoothness conditions for f so that the gradient is

well-defined, knowledge of ∇f(θt) is sufficient to numerically calculate the value of θ∗.

Hence, having robust algorithms to calculate the gradient ∇f(θt) is key in order to solve

numerically economic models.

The canonical numerical way to calculate the gradient of f at the point θ ∈ Rn is the

deterministic finite difference method, which directly follows from the definition of the

gradient. By definition, the gradient of f at the point θ ∈ Rn is the vector of partial

derivatives, where the ith element is ∂f(θ)
∂θi

. In turn, the partial derivative is defined

as the limit ∂f
∂θi

(θ) = limh→0
f(θ1,θ2,...,θi+h,...,θn)−f(θ)

h
. This definition motivates a popular

11

scheme to approximate the value of ∂f(θ)
∂θi

, replacing the limit operator with the use of a

small value for h. More specifically, each component i of the gradient is approximated

with ∂f
∂θi

(θ) ≈ f(θ1,θ2,...,θi+h,...θn)−f(θ)
h

, where h is a small strictly positive real number. This

approach requires a total of n+1 evaluations of f . Clearly, when n is large and f is costly

to evaluate, using the deterministic finite difference method to evaluate numerically the

gradient becomes prohibitively slow and unpractical.

This is why alternatives methods to calculates the gradient are used when n is large. In

particular, the backpropagation algorithm (Rumelhart, Hinton, and Williams, 1986) is

the most popular algorithm used in machine learning to calculate the gradient of a given

loss function. Backpropagation is an efficient algorithm that computes an approxima-

tion of the gradient with high numerical precision, subject to floating-point limitations.4

Indeed, when using backpropagation to compute the gradient of a scalar-valued loss

function, the runtime cost is at most four times that of evaluating the loss function.

However, as previously noted, backpropagation comes with some drawbacks. Firstly,

backpropagation requires implementation in a language and library that supports auto-

matic differentiation. While this is usually not an issue for new research projects, it can

be prohibitive when refactoring an existing implementation of f , as the time and effort

needed for a complete overhaul of an existing code base may be substantial. Secondly,

backpropagation requires storing in memory all intermediate computations, which might

not be feasible in some cases. Thirdly, the extension of backpropagation to non-smooth

cases is non-trivial and is much more computationally intensive (Nesterov, 2005).

For these reasons, alternative ways to calculate the gradient of the loss function have been

developed. They rely on using random draws of a vector v and numerical approximations

of the directional derivative along that direction. That is why these methods might be

called “randomized directional derivative estimators”. The directional derivative of f at

the point θ ∈ Rn in the direction of v is defined as the limit

Dvf(θ) = lim
h→0

f(θ + hv)− f(θ)

h
(3)

provided this limit exists. By analogy with the deterministic finite difference scheme, one

may approximate the directional derivative in the direction of v using a small positive

4For computations in single-precision (float32), numerical accuracy is typically on the order of 10−7,

while in double-precision (float64), accuracy improves to approximately 10−16.

12

real number denoted by h:

DF,vf(θ) =
f(θ + hv)− f(θ)

h
(4)

Equation (4) requires only two evaluations of f , independently of the dimension of

θ. Hence, one would hope to use them in order to approximate the gradient when n is

large. It turns out that this is indeed possible. To see that, consider the case where f is

differentiable at θ. In that case, the directional derivative can also be expressed as the

dot product of the gradient of f at θ, denoted by ∇f(θ), and the vector v

Dvf(θ) = ∇f(θ) · v (5)

Expression (5) makes it clear that the directional derivative can be interpreted as the

projection of the gradient vector onto the direction spanned by v. Hence, the directional

derivative contains useful information about the gradient, which we would like to approx-

imate in order to use the gradient descent algorithm. In fact, one may obtain unbiased

estimators of the gradient using the directional derivative, as stated in proposition 1.

Proposition 1. Consider the function g : Rn → Rn defined as

g(θ) = Dvf(θ)v (6)

where v is a normally distributed random vector in Rn with zero mean and a variance-

covariance matrix given by the identity matrix In. If f is differentiable at θ, then g(θ)

is an unbiased estimator of the gradient ∇f(θ).

Proof. See Appendix A □

To get some intuition on why g(θ) is an unbiased estimator for ∇f(θ), first observe
that the directional derivative of f gives the scalar projection of the gradient vector along

the vector v. Consider for instance the case where vk points exactly in the direction of

the gradient, which can be expressed as vk = a∇f(θ), with a > 0. Then ∇f(θ) · vk =

a∥∇f(θ)∥2, so that (∇f(θ) · vk)vk generates a large contribution in the direction of the

true gradient in the average 1
K

∑K
k=1(∇f(θ)·vk)vk ≈ E

[
(∇f(θ)·v)v]. Now, consider the

case where vk points in the opposite direction of the gradient, which can be expressed

as vk = −a∇f(θ), with a > 0. Then, the dot product between the gradient and

the vector result in negative value: ∇f(θ) · vk = −a∥∇f(θ)∥2. However, multiplying

this quantity with the vector vk results in a vector that points in the direction of the

13

gradient: (∇f(θ) · vk)vk = a2∥∇f(θ)∥2∇f(θ). Hence, vectors pointing in the opposite

direction of the gradient are reflected back and still provide a large contribution in the

direction of the gradient in the average 1
K

∑K
k=1(∇f(θ) · vk)vk. Finally, if the vector

vk is orthogonal to the gradient, then its contribution in 1
K

∑K
k=1(∇f(θ) · vk)vk is null,

because ∇f(θ) · vk = 0. Because v is drawn from a multivariate normal distribution

with zero mean and identity variance-covariance matrix, each direction is equally likely.

Overall, this creates a situation in which the draws of vk positively interfere so that,

on average, g(θ) points exactly in the direction to the gradient of f evaluated at θ.

Using an identity matrix for the variance-covariance matrix ensures that the expected

value of g(θ) matches both the direction and magnitude of ∇f(θ). This discussion is

illustrated in Figure 1, using a simple two-dimensional function f(x, y) = x2 + y2, with
1
K

∑K
k=1(∇f(θ) · vk)vk providing a good approximation of ∇f(θ).

Proposition (1) combined with equation (4) lead to an estimator for the gradient of f

evaluated at θ. The randomized finite difference scheme is defined as:

gF,vf(θ) =
f(θ + hv)− f(θ)

h
v (7)

where v is a normally distributed random vector in Rn with zero mean and a variance-

covariance matrix given by the identity matrix In.

The main advantage of estimator (7) is that it requires only two evaluations of f , inde-

pendently of the dimension of θ. It is in sharp contrast with the n+1 function evaluations

required for the deterministic finite difference method. One drawback is that a single

draw of gF,vf(θ) might give a poor approximation of the true gradient ∇f(θ).

However, when minimizing a function by stochastic gradient descent, access to a noisy

estimator of the gradient of the loss is generally enough to find numerically the minimum

of a function. In fact, Nesterov and Spokoiny (2017) demonstrate that the estimator

(7) can be used for minimization purposes, using an iterative scheme of the form (2),

even for non-smooth and non-convex functions. Conditional on carefully choosing the

learning rate γt and the value h, convergence of an iterative scheme of the form (2) is

ensured for functions that are simply Lipschitz continuous on their domain5. Lipschitz

continuity is a stronger condition than regular ϵ-δ continuity, but it is weaker condition

5A function f : Rn → R is Lipschitz continuous if there exists a constant L ≥ 0 such that for all

x, y ∈ Rn, the following inequality holds: |f(x) − f(y)| ≤ L∥x − y∥, where ∥.∥ denotes the norm in

14

than differentiability. For example, the functions x → |x| and x → max{0, x} are

Lipschitz continuous on R, but they are not differentiable everywhere.

To get some intuition on why only Lipschitz continuity is required for the function being

minimized, and not differentiability everywhere, it is instructive to see the connection be-

tween the randomized finite scheme and the Gaussian smoothing operator. The Gaussian

smoothing operator applied to the function f is the new function fh(θ) = E
[
f(θ+hv)

]
,

where the expectation is taken with respect to v, denoting a zero mean normally dis-

tributed random vector with covariance matrix the identity matrix. One can show that

fh(θ) has better smoothness properties than the original function f , while preserving

the potential convexity of f . In particular when h > 0, when the function f is Lipschitz

continuous on its domain, fh(θ), its Gaussian smoothed version fh is a continuously

differentiable function everywhere on its domain. The gradient of fh(θ) is given by

∇θfh(θ) =
1
h
E
[
f(θ + hv)v

]
. Because v is a zero mean vector, E

[
f(θ)v

]
= 0, and the

gradient of fh(θ) is also equal to E
[f(θ+hv)−f(θ)

h
v
]
, which admits an unbiased estimator

given by one realization of the randomized forward difference operator defined in equation

(7). Said differently, the randomized forward difference scheme can be seen as originating

from the Gaussian smoothing operator, which produces differentiable functions as long

as the original function is only Lipschtiz continuous.

I now illustrate the fact that the randomized directional derivative estimators can be used

for minimization purposes using two test objective functions. First, I find the minimum

of the function f(x, y) = x2+y2 using the gradient descent algorithm with the analytical

gradient (2x, 2y), as well as with the randomized directional derivative estimator defined

in equation (7). I use a learning rate equal to 0.05, set h = 1.10−4. When using the

randomized directional derivative estimator, I perform 100 replications of the gradient

descent algorithm, using the same starting value. Results are presented in Figure 2.

While gradient descent using the exact gradient clearly outperforms gradient descent

based on a randomized finite difference scheme, the latter yields good approximations

of the minimum of f . In a second experiment, I repeat the same procedure with the

non-smooth function f(x, y) = |x− 1|+ |1 + y− 2x|. This function, minimized at (1, 1),

Rn, typically the Euclidean norm. The convergence result of Nesterov and Spokoiny (2017) requires

knowing the constant L, in order to set the values for γt and the value h.

15

is non-differentiable for x = 1 and y = 2x−1, but it Lipschitz continuous on its domain.6

Results, presented in Figure 3, illustrate that direct gradient descent struggles with non-

smooth functions due to oscillations, whereas the randomized finite difference scheme

better approximates the minimizer in such cases.

Figure 1. Approximating the gradient of ∇f(θ) with g(θ) from propo-

sition (1)

2 1 0 1 2
x

2

1

0

1

2

y

Perturbations vi Approx. Gradient (f vi)vi Average (f vi)vi Gradient f

0.0

1.8

3.6

5.4

7.2

9.0

10.8

12.6

le
ve

l c
ur

ve
s

Notes. This figure illustrates the use g(θ) = (∇f(θ) · v)v (orange stripped arrows) to approximate the

gradient ∇f(θ) (purple dotted arrow) for the function f(θ) = f(x, y) = x2 + y2, where v is a zero-mean

normally distributed random vector with variance-covariance matrix the identity matrix. For this plot, I use

seven independent draws of v (green dashed arrows). Calculations are realized for θ = (1
4
, 1
4
). The average

1
K

∑K
k=1(∇f(θ) · vk)vk is represented by the blue arrow filled with dark dots.

6The gradient of f is given by ∇f(x, y) = (−1, 1) when x > 1 and 1 + y − 2x > 0, (3,−1) when

x > 1 and 1+y−2x < 0, (−3, 1) when x < 1 and 1+y−2x > 0, (1,−1) when x < 1 and 1+y−2x < 0.

For non-differentiable points, I use one-sided derivatives.

16

Figure 2. Minimization of f(x, y) = x2 + y2 by gradient descent

(a) Trajectories using the exact gradient and the randomized finite

difference scheme

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6
y

Finite Difference
Exact Gradient Descent

(b) Distance from minimum (0, 0)

0 25 50 75 100 125 150 175 200
Gradient Descent Steps

10 7

10 5

10 3

10 1

101

Di
st

an
ce

 fr
om

 M
in

im
um

Exact Gradient Descent
Finite Difference

Notes. This figure illustrates the minimization of the function f(x, y) = x2 + y2 using gradient descent.

The gradient is calculated exactly with the formula (2x, 2y), or approximated using the randomized finite

difference scheme defined in equation (7). The top panel shows the level curves of f , as well as gradient descent

trajectories using different schemes to calculate the gradient. For the randomized finite difference scheme, 100

independent replications are used. The bottom panel displays the Euclidean distance from the minimum of f .

For the randomized finite difference scheme, shaded areas represent the P10-P90 inter-percentile range, while

lines represent the average value across the 100 replications.

17

Figure 3. Minimization of f(x, y) = |x − 1| + |1 + y − 2x| by gradient

descent

(a) Trajectories using the exact gradient and the randomized finite

difference scheme

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Finite Difference
Exact Gradient Descent

(b) Distance from minimum (1, 1)

0 25 50 75 100 125 150 175 200
Gradient Descent Steps

10 1

100

Di
st

an
ce

 fr
om

 M
in

im
um

Exact Gradient Descent
Finite Difference

Notes. This figure illustrates the minimization of the function f(x, y) = |x− 1|+ |1 + y − 2x| using gradient

descent. The gradient is calculated exactly (see footnote 6) or approximated using the randomized finite

difference scheme defined in equation (7). The top panel shows the level curves of f , as well as gradient descent

trajectories using different schemes to calculate the gradient. For the randomized finite difference scheme, 100

independent replications are used. The bottom panel displays the Euclidean distance from the minimum of f .

For the randomized finite difference scheme, shaded areas represent the P10-P90 inter-percentile range, while

lines represent the average value across the 100 replications.

18

3.2. Randomized directional derivative estimator applied to the bc-MC op-

erator. Now, I focus on the analysis of minimization problems arising from economic

modeling. In particular, economic models can often be written as a set of K stochastic

equations of the form:

Es

[
Eε

(
fk(s, ε|θ∗)

)2]
= 0 (8)

where s denotes a state vector, ε denotes a zero-mean innovation vector, and θ∗ is vector

parameterizing the policy or value functions characterizing the economic model under

consideration. The K stochastic equations may be grouped together to form a unique

loss function to be minimized:

θ∗ = arg min
θ∈Rn

L(θ) = arg min
θ∈Rn

K∑
k=1

µk Es

[
Eε

(
fk(s, ε|θ)

)2]
(9)

where µk are K subjective weights. Because closed-form solutions for the expectation

operators in equations (8) and (9) are in general unavailable, numerical approximation

must be used. Using Monte Carlo integration, which consists of using sample means to

approximate population means, is a popular approach because it is easy to implement and

works well even when s and ε are high-dimensional vectors. An intuitive implementation

of Monte Carlo integration would suggest the following estimator for the loss function

defined in equation (9):

LB
M,N(θ) =

K∑
k=1

µk
1

M

M∑
m=1

[(1

N

N∑
n=1

fk(sm, εn|θ)
)2]

(10)

As shown in Pascal (2024), the naive use of two nested sample means to approximate

(8) results in a biased estimator. This bias arises because, due to Jensen’s inequality,

the expectation of the squared sample mean exceeds the square of the population mean,

unless the variance of the underlying distribution is exactly zero. The bias disappears

when taking N to infinity, which is not feasible in practical applications. Instead, the

author suggests to use the following unbiased estimator for the loss function, which

removes the small sample bias in (10):

LM,N(θ) =
K∑
k=1

µk
2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

fk(sm, ε
i
m|θ)fk(sm, εjm|θ) (11)

where εi and εj are random variables drawn from the same distribution as ε, indepen-

dent from each other. Under some assumptions on the primitives of the model, this

bias-corrected Monte Carlo (bc-MC) operator is the best unbiased estimator of the loss

19

function, in the sense that it is the minimum-variance unbiased estimator (MVUE).

The hyperparameters M and N control the extent to which one is willing to explore

the state space, versus exploring the innovation space. They can be set automatically

by minimizing the variance of the loss function during training, while keeping a con-

stant computational budget, which can be proxied by MN . Importantly for practical

applications, equation (11) can be factorized as:

LM,N(θ) =
K∑
k=1

µk
2

MN(N − 1)
fT
k,θΛfk,θ (12)

where fk,θ is a column vector of size MN such that its transpose fT
k,θ is defined as(

fk(s1, ε
1
1|θ), fk(s1, ε21|θ), . . . , fk(s1, εN1 |θ), fk(s2, ε12|θ), fk(s2, ε22|θ), . . . , fk(sM , εNM |θ)

)
.

The matrix Λ is an MN ×MN matrix defined as the Kronecker product IM ⊗UN , with

IM being the M ×M identity matrix and UN being an N ×N upper triangular matrix

whose diagonal elements are all equal to zero, while the entries above the main diagonal

are equal to one. If the subjective weights are constant, for instance, µk = 1
K
, equation

(12) can be further factorized as a single quadratic form:

LM,N(θ) =
2

KMN(N − 1)
fT
θ Σfθ (13)

where fθ is a column vector of size KMN such that its transpose fT
k,θ is defined as(

fT
1,θ,f

T
2,θ, ...,f

T
K,θ), and Σ is a KMN×KMN matrix defined as the Kronecker product

IK⊗Λ. While the matrices Λ or Σ may be large, they are sparse, leading to very efficient

implementation when using sparse matrix multiplication routines.

When using a software compatible with automatic differentiation, calculating the gradi-

ent of the loss using equations (12) or (13) can be efficiently done using backpropagation,

because LM,N(θ) is a scalar value. This case is investigated in Maliar, Maliar, andWinant

(2021) when N = 2, and in Pascal (2024) when N is learned during training and may

vary over training instead of being fixed at N = 2. However, when automatic differenti-

ation is not available or not desirable for the reasons listed previously, the randomized

directional derivatives estimators from the previous section may be used.

I now discuss how the randomized directional derivative estimator from the previous

section can be applied to the bc-MC loss function defined by equation (13). In order to

invoke the results discussed in the previous section, this loss function must be Lipschitz

continuous. The following proposition gives conditions under which the bc-MC loss

20

function inherits Lipschitz continuity from the more primitive functions fk, which are

easier to analyze and known once an economic model is specified.

Proposition 2. Assume that for all values of the state and innovation vectors, the

function f : Rn → RKMN defined by f(θ) = fθ is Lipschitz continuous on its domain,

where n denotes the dimension of the MLP’s parameter vector, then

(1) if f is bounded on Rn, the loss function (13) is Lipschitz continuous on its domain;

(2) the restriction of the loss function (13) to the compact subset of D ⊂ Rn is

Lipschitz continuous on D.

Proof. See Appendix B □

I now discuss the conditions listed in Proposition 2 and their applicability. First,

Lipschitz continuity of the vector-valued function f : Rn → RKMN can be deduced from

the Lipschitz continuity of the scalar-valued functions fk(s, ε|θ). Indeed, if for all k ∈
{1, . . . , K} and for all s and ε, the functions fk(s, ε|θ) : Rn → R are Lipschitz continuous

on Rn, then the vector-valued function f : Rn → RKMN , formed by stacking all fk(s, ε|θ),
is also Lipschitz continuous on Rn (as long as n is finite). Similarly, boundedness of the

vector-valued function f , as mentioned in Proposition 2.1, is also achieved when, for all

k ∈ {1, . . . , K} and for all s and ε, the functions fk(s, ε|θ) : Rn → R are bounded on

Rn.

Second, in economic applications, proving the boundedness of the function f , as required

by 2.1, might be too restrictive or difficult. In such cases, Proposition 2.2 suggests

working on a restricted compact subset D ⊂ Rn, which contains the minimizer of (13).

In practice, D might take the form of a Cartesian product of closed intervals [a1, b1] ×
...× [an, bn]. This can be enforced by using “gradient clipping”, which consists of using

a truncated or rescaled version of the gradient of the loss during gradient descent (see

Zhang et al., 2020). Gradient clipping ensures that the norm of the gradient does not

exceed a certain threshold, which de facto ensures that the parameter vector remains

within a certain bounded set during the training process, as long as one uses a finite

number gradient descent steps.

Let us now assume that the conditions of Proposition 2 are met. Thus, the bc-MC

loss function (13) is Lipschitz continuous on Rn (or D). This in turn implies that its

Gaussian smoothed version is continuously differentiable on its domain, with gradient

21

given by 1
h
Ev

[
LM,N(θ + hv)v

]
. This leads to an estimator for the gradient of the loss

function. Using the randomized finite difference scheme (7), one gets:

∇θLF
M,N(θ) =

2

KMN(N − 1)

v

h

(
fT
θ+hvΣfθ+hv − fT

θ Σfθ

)
=

1

KMN(N − 1)

v

h

((
fθ+hv − fθ

)T (
Σ + ΣT)

(
fθ+hv + fθ

)) (14)

where the first line simply follows from the definition of the randomized forward difference

scheme, while the second line uses the fact that xTAx = xT A+AT

2
x, and that xTBx−

yTBy = (x − y)TB(x + y) when B is a symmetric matrix. Equation (14) defines

an estimator of the gradient of the bc-MC loss function LM,N(θ), where the bc-MC

loss function is itself an estimator of the loss function L(θ) appearing in equation (9).

In what follows, I use the term “gradient-free bc-MC operator” when simultaneously

using LM,N(θ) as an estimator for the loss function L(θ), while using ∇θLF
M,N(θ) as an

estimator for ∇θL(θ).

Equation (14) can be seen as yielding a scaled version of the random direction vector v,

where the scaling coefficient depends on the number of stochastic functional equations

characterizing the model (K), on hyperparameters (M , N , h), and on the value of a

symmetric bilinear form xTBy capturing the rate of change of the loss function in a

neighborhood of the MLP’s parameter θ. A striking feature of equation (14) is that,

independently of the dimension of the MLP’s parameter vector or of the underlying

economic model, equation (14) requires only two different evaluations of the function

f : Rn → RKMN defined by f(θ) = fθ.

I now discuss unbiasedness. While the bc-MC operator (12) is an unbiased estimator of

the loss function L(θ), the estimator of the gradient ∇θLF
M,N(θ) is a biased estimator

of the gradient of the loss function ∇θL(θ). However, the bias vanishes as the scalar h

tends to 0, as discussed in the next proposition.

Proposition 3. Assume that for all values of the state and innovation vectors, the func-

tion ψ : Rn → R defined by ψ(θ) = LM,N(θ) is Lipschitz continuous and differentiable

on its domain. Then, when the scalar h tends to 0, the estimator ∇θLF
M,N(θ) defined in

equation (14) is an unbiased estimator of the gradient of the loss function, ∇θL(θ).

Proof. See Appendix C □

22

To simplify, Proposition 3 expresses conditions on the loss function itself. Following the

approach of Proposition 2, it could also be expressed as conditions on the vector-valued

function f : Rn → RKMN (or the scalar-values functions fk(s, ε|θ), for k ∈ {1, . . . , K}).
Note that if, for values of the state and innovation vectors, f is differentiable on its

domain, then the function ψ is also differentiable on Rn. This is because LM,N(θ) only

involves products and linear combinations of elements of the vector fθ and differentiabil-

ity is preserved under these operations. However, note that the product of two Lipschitz

continuous functions is not necessarily Lipschitz continuous. Yet, Lipschitz continuity

of the product holds if the two functions are bounded, in line with the requirements of

Proposition 2.1.

Overall, Proposition 3 offers theoretical reassurance, because it shows that the bias can

be controlled by the hyperparameter h. It also suggests to use a small value of h, in

order to minimize this bias. However, in practice, an excessively small value for h might

lead to accumulation of numerical errors, which may prevent convergence.

4. Numerical illustration

In this section, I illustrate the broad applicability of the gradient-free bc-MC op-

erator using three different economic models. Firstly, I use the standard neoclassical

stochastic growth model to illustrate the theoretical results from Section 3. I then solve

a smooth large-scale OLG model, before solving a large-scale OLG model with non-

differentiabilities. I use this last numerical experiment as an opportunity to compare the

bc-MC operator and the PEA.

4.1. The neoclassical stochastic growth model. Let us first consider a stylized ex-

ample to illustrate the theoretical results from Section 3. Specifically, let us consider a

special case of the neoclassical stochastic growth model developed by Brock and Mir-

man (1972), with full depreciation of capital and a logarithmic utility function, which

admits a closed-form solution. A representative household maximizes her inter-temporal

discounted utility

max
{ct}∞t=0

E
[∞∑

t=0

βt log(ct)
]

(15)

by choosing period t consumption ct subject to the constraint 0 ≤ ct ≤ yt, where yt

denotes the household’s income in period t, with initial income y0 given. Income in the

23

next period is stochastic and is defined as follows: yt+1 = kαt+1ηt+1, with η denoting

i.i.d. productivity shocks, and kt+1 = yt − ct denoting the capital stock available at

the beginning of period t + 1. The productivity shocks are assumed to be lognormally

distributed ηt ≡ exp(νt), where ν is a zero-mean normally distributed random variable

with variance σ2
ν . For the problem to be well-posed, the discount factor β is positive but

strictly less than one, while the parameter α, governing the marginal product of capital,

is assumed to be strictly between 0 and 1. Under these conditions, the economic model

is fully characterized by a single Euler equation that must hold every period:

Eν

[
β
ct
ct+1

αkα−1
t+1 exp(νt+1)

]
= 1 (16)

Since the logarithmic utility function satisfies the Inada condition at zero (limc→0
d
dc
log(c) =

+∞), the optimal consumption function c∗(yt) : R+ → R+ is interior. As long as the

function c∗ is continuous on its domain, the transversality condition that accompanies

the Euler condition is automatically met (Mitra and Roy, 2017). Here, we know that

c∗(yt) = ϕ∗yt, which is indeed a continuous function on its domain, with ϕ∗ = (1− αβ).

I now discuss how one may transform this economic problem into an optimization prob-

lem solvable with the gradient-free bc-MC operator. Let us use an MLP to approximate

the consumption share: c(yt|θ) = MLP(yt|θ)yt. In its general formulation, an MLP

is a composition of N affine transformations, represented by matrices Wn, and N − 1

activation functions σn:

MLP(x|θ) =
(
WN ◦ σN−1 ◦WN−2 ◦ σN−3 ◦ ... ◦W1

)
(x). (17)

Hence, the parameter vector θ can be defined as the values of the coefficients of the

N matrices Wn. To ensure that the budget constraint is strictly respected, we can

apply a max-min operator to the output of the final layer, to define a new function

ϕ(yt|θ) = max
{
τ,min

{
MLP(yt|θ), 1− τ

}}
, such that c(yt|θ) = ϕ(yt|θ)yt, with τ > 0

a small positive real value.

Because the focus of this subsection is to illustrate the propositions from Section 3, I

will make simplifying assumptions. Assume the MLP has a single node with a slope

parameter ϕ1 = 0 and an intercept denoted by ϕ0. While this is an extreme case of the

general MLP architecture, it can be trained to find the true solution (ϕ∗
0 = 1 − αβ).

With these assumptions and after simplifications, the Euler equation (16) can be written

24

as Ey

[
Eν

[
f(y, ν|θ)

]2]
, with f(y, ν|θ) = αβ

1−max{τ,min{ϕ0,1−τ}} − 1. The function f is

Lipschitz continuous on R, with a Lipschitz constant given by αβ
(1−τ)2

. It is also bounded,

with a maximum value given by αβ
τ
− 1 and a minimum value given by αβ

1−τ
− 1. Hence,

the conditions for Proposition 2.1 apply, and the bc-MC loss function (13) is Lipschitz

continuous. Because the function f does not depend on the realizations of the state and

innovation variables y and ν, the bc-MC loss function can be expressed as the square

of the function f : LM,N(ϕ0) =

(
αβ

1−max{τ,min{ϕ0,1−τ}} − 1

)2

, which conveniently does not

depend on the hyperparameters M and N .

In order to illustrate Proposition 3, consider now the estimator of the gradient, given by

∇θLF
M,N(θ) = ∂

∂ϕ0
LF

M,N(ϕ0) = v
h

((
αβ

1−max{τ,min{ϕ0+hv,1−τ}} − 1
)2 − (αβ

1−max{τ,min{ϕ0,1−τ}} −

1
)2)

, where v is a standard normal variable. Assume that during training, ϕ0 remains

strictly within (τ, 1− τ), so that LF
M,N(ϕ0) =

v
h

((
αβ

1−ϕ0−hv
− 1
)2 − (αβ

1−ϕ0
− 1
)2)

, which is

differentiable everywhere on this restricted domain. Straightforward calculations show

that Ev

[
limh→0

∂
∂ϕ0

LF
M,N(ϕ0)

]
= Ev

[
limh→0 2v

2 αβ(
(1−ϕ0+hv)(1−ϕ0)

) αβ(1−ϕ0−hv/2)(
(1−ϕ0+hv)(1−ϕ0)

)], which
is equal to 2αβ

1−ϕ0

(
αβ

1−ϕ0
− 1
)
= ∂

∂ϕ0
L(ϕ0), in line with Proposition 3.

I now numerically solve the model using the standard bc-MC operator and the gradient-

free bc-MC operator. In the first case, I use backpropagation to calculate the gradient

of the loss LM,N(ϕ0). In the second case, I use the estimator ∂
∂ϕ0

LF
M,N(ϕ0), as defined

above. In terms of economic parameter values, I set the production parameter α = 0.36

and the discount factor β = 0.96, which is a standard parametrization for RBC models

at the yearly frequency. I use a Gaussian smoothing parameter h = 1.10−4. I find

the coefficient ϕ0 by gradient descent, using two different starting points, ϕ0 = 0.5 and

ϕ0 = 0.0. Results are presented in Figure 4.

For ϕ0 = 0.5, as long as ϕ0 remains within (τ, 1− τ) during training, the gradient of the

bc-MC loss function is continuously differentiable, and using ∂
∂ϕ0

LM,N(ϕ0) rather than
∂

∂ϕ0
LF

M,N(ϕ0) results in a more accurate solution, as indicated by the Euclidean distance

from the true solution ϕ∗
0 = 1 − αβ (see the top panel of Figure 4). For ϕ0 = 0.0, the

gradient of the bc-MC loss function is equal to 0, which results in non-convergence for the

gradient descent algorithm, as the algorithm converges to a flat region. The gradient-free

bc-MC operator, which uses ∂
∂ϕ0

LF
M,N(ϕ0), successfully escapes the flat region (0, τ) and

ends up giving reasonably accurate results for ϕ0 (see the bottom panel of Figure 4).

25

Figure 4. Trajectories using gradient-based and gradient-free bc-MC op-

erators

(a) Distance from minimum ϕ∗
0, starting at ϕ0 = 0.5

0 25 50 75 100 125 150 175 200
Gradient Descent Steps

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Di
st

an
ce

 fr
om

 M
in

im
um

BC-MC Operator
Gradient-Free BC-MC Operator

(b) Distance from minimum ϕ∗
0, starting at ϕ0 = 0

0 25 50 75 100 125 150 175 200
Gradient Descent Steps

10 5

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 fr
om

 M
in

im
um

BC-MC Operator
Gradient-Free BC-MC Operator

Notes. This figure illustrates the use of the bc-MC operator and the gradient-free bc-MC operator to learn

the policy function that satisfies the Euler equation (16). In the first case, the gradient of the bc-MC loss

function, denoted by ∇θLM,N (θ), is used. Here, ∇θLM,N (θ) is a deterministic value, as it does not depend

on the state or innovation vectors. In the second case, the gradient of the loss function is approximated using

∇θLF
M,N (θ) from equation (14). For the gradient-free bc-MC operator, 100 independent replications are used,

to take into account the randomness of the random direction vector v. Lines represent the Euclidean distance

from the true value ϕ∗
0 = 1− αβ. For the gradient-free bc-MC operator, shaded areas represent the P10-P90

inter-percentile range, while the orange dotted lines represent the median value across the 100 replications.

26

4.2. A smooth OLG model. I now solve a large-scale overlapping generation (OLG)

model. This OLG model, which also appears in Krueger and Kubler (2004) and Azinovic,

Gaegauf, and Scheidegger (2022), based on the work of Huffman (1987), admits a closed-

form solution in some specific instances, which is convenient for verifying the accuracy

of the gradient-free bc-MC operator. This setting is also interesting because it does

not feature “approximate aggregation”, which is a key requirement for alternative global

methods, in particular the method of Krusell and Smith (1998).7

The model is populated by A households, each representing a different age group, and

living for A periods. There is no uncertainty about lifetime. Households only work in

the first period of their lives, receiving a competitive wage and saving in risky capital.

Households cannot die with debt and start life with no assets. At time t ∈ {t′, ..., t′+A−
1}, households born at time t′ can be identified by their age s = t − t′ + 1 ∈ {1, ..., A}.
At each time period t, the representative household of age s chooses consumption cst

and savings ast in order to maximize their remaining time-separable discounted expected

lifetime utility given by

Et

A−s∑
h=0

βhu(cs+h
t+h) (18)

subject to the budget constraint

cst + ast = rtk
s
t + wtl

s

where β < 1 denotes the discount factor and u(c) = c1−γ−1
1−γ

is a CRRA utility function,

with γ > 0 the coefficient of relative risk aversion. The variable kst = as−1
t−1 denotes the

available capital in the beginning of the period of age group s at time t, inherited from

last period’s savings, while ls denotes the exogenously supplied labor endowment of age

group s. By assumption, households only work in the first period of their life: ls = 1 for

s = 0 and ls = 0 otherwise. Hence, aggregate labor supply Lt =
∑A

h=1 l
s is constant and

equal to one.

The production side of the economy is modelled as a single representative firm operating

a Cobb-Douglas production function. The quantity of consumption good produced at

7“Approximate aggregation” holds when agents may use a very limited number of moments in order

to accurately predict next period’s prices. Here, this property does not hold in general, as shown in

Krueger and Kubler (2004).

27

time t is given by

f(Kt, Lt, ηt, δt) = ηtK
α
t L

1−α
t +Kt(1− δt) (19)

where ηt denotes the stochastic TFP and δt denotes the stochastic depreciation rate. The

vector of exogenous stochastic variables zt = (ηt, δt) is assumed to satisfy the Markov

property. The parameter α denotes the capital share in production, while Kt denotes

aggregate capital with Kt =
∑A

h=1 k
h
t . The firm’s optimization problem implies that the

return on capital and the wage are given by

rt = αηtK
α−1
t L1−α

t + (1− δt)

wt = (1− α)ηtK
α
t L

−α
t

(20)

In this economy, given initial conditions z0, {ks0}As=1, a competitive equilibrium is defined

as a collection of choices for households {(cst , ast)As=1}∞t=0 and for the representative firm

(Kt, Lt)
∞
t=0 as well as prices (rt, wt)

∞
t=0, such that

(1) given prices rt and wt, households optimize (18)

(2) given prices, the firm maximizes profits (19)

(3) markets clear

Because labor supply is exogenous, the labor market automatically clears. Market clear-

ing for the capital market requires that Kt =
∑A

h=1 a
h−1
t−1 . If the capital market clears,

Walras’ law implies that the good market clears.

In this economy, an equilibrium is characterized by A− 1 Euler equations. More specif-

ically, for h ∈ {1, ..., A− 1}:

Eη,δ

[
β
(ch+1

t+1

cht

)−γ
rt+1 − 1

]
= 0 (21)

While Krueger and Kubler (2004) use the vector of capital holdings kt = (k1t , k
2
t , ..., k

A
t)

and the vector of exogenous stochastic variables zt = (ηt, δt) as the state vector, one may

also define the state vector as (yt, zt), where yt = (y1t , y
2
t , ..., y

A
t) denotes the vector of

total available wealth at the beginning of period t, with yht = rtk
h
t + wtl

h. Indeed, when

households choose how much to consume using a policy function of the form cht (yt, zt),

one obtains savings decision using the budget constraint aht (yt, zt) = yht − cht (yt, zt).

With known savings decisions, one obtains the aggregate capital level next period Kt+1,

which gives the interest rate and the wage level using equation (20). With known rt+1

and wt+1, the vector of available wealth at the beginning of period t+1 denoted by yt+1

is fully determined, because labor supply is exogenous. Without losing much generality,

28

we may assume that the exogenous stochastic variables are of the form ηt = η̄ + εη and

δt = δ̄+ εδ, with εη and εδ two i.i.d. zero-mean normal variables with finite variances σ2
η

and σ2
δ . With this assumption, the relevant state vector is reduced to yt, as zt has no

persistence.

To transform this economic problem into an optimization problem solvable with the

gradient-free bc-MC operator, I use a single MLP, parameterized by θ, to approximate

the consumption share of all age groups at once: c(yt|θ) =

(
MLP(yt|θ)

1

)
⊙ yt. Here,

ct denotes the vector of consumption choices (c1t (yt|θ), c2t (yt|θ), ..., cAt (yt|θ)). The MLP

is a function of the form (17), which here is a mapping from RA to RA−1. The symbol ⊙
is here used to denote the element-wise multiplication between two vectors of same size.

Here, I have imposed that the last generation consumes all their available wealth.

In line with the general procedure presented in Section 3.2, solving the OLG model here

consists in finding the MLP’s parameter vector θ such the A − 1 stochastic equations

Es

[
Eε

(
fk(s, ε|θ)

)2]
= 0 hold, where the state vector is s = y, the innovation vector

ε = (εη, εδ), and the residual functions are given by

fk(s, ε|θ) = β
(ck+1

t+1 (yt+1|θ)
ckt (yt|θ)

)−γ(
α(η̄+εη)

(A∑
h=1

yht −ckt (yt|θ)
)α−1

+(1− δ̄−εδ)
)
−1 (22)

These A− 1 stochastic equations can be expressed as single bc-MC loss function, taking

the form of a quadratic form, as in equation (13).

In terms of parametrization, I closely follow Krueger and Kubler (2004) and Azinovic,

Gaegauf, and Scheidegger (2022). The model is at the yearly frequency. I set the capital

share parameter to α = 0.3 and use a discount factor β = 0.7. For the productivity

parameter, I use the normalization η̄ = 1 and set the standard deviation parameter to

ση = 0.05. I set the mean yearly depreciation rate to δ = 0.1 and use a standard deviation

of σδ = 0.01. I use a logarithmic utility function. In this case, Krueger and Kubler (2004)

show that the optimal consumption functions are given by cht (yt, zt) =
(
1−β 1−βA−h

1−βA−h+1

)
yht ,

or equivalently that the optimal savings functions are given by aht (yt, zt) = β 1−βA−h

1−βA−h+1y
h
t .

29

I use 20 different age groups, which correspond to the baseline case analyzed by the

authors.

Regarding the architecture of the MLP, I use a MLP with 2 hidden layers with 25

nodes each. This results in n = 1669 parameters to be learnt during training, which is

much more than necessary, since the analytical solution could be represented by a single

layer MLP outputting 19 constant values given by
(
1 − β 1−βA−h

1−βA−h+1

)
. However, I do not

want to encode knowledge of the analytical solution within the MLP architecture, this

is why I use this general architecture. To ensure that consumption remains positive, I

apply a sigmoid activation function σ(x) = 1
1+e−x to the output of the final layer, which

constrains the output to be between 0 and 1. To avoid numerical instability created by

almost zero consumption or almost zero savings, I also apply a max-min operator, as

in Section 4.1. After these transformations, the consumption function is approximated

with c(yt|θ) =

(
max{τ,min{σ

(
MLP(yt|θ)

)
, 1− τ}}

1

)
⊙ yt, where τ is a small but

strictly positive real number.

With this choice of MLP architecture and economic parameter values, I show in sections

D - F of the Appendix that the conditions for Proposition 2 are met, provided some

mild restrictions are imposed during training. This ensures that Ev

[
LM,N(θ + hv)

]
is

continuously differentiable, with gradient that can be estimated with equation (14). If

one uses smoothed versions of the maximum and minimum operator appearing in c(yt|θ),
then Proposition 3 also applies, as discussed in Section G of the Appendix.

I now discuss some important implementation details regarding the gradient-free bc-MC

operator. Firstly, one must sample from the ergodic distribution for the state vector

y, which itself depends on the unknown parameter vector θ∗ that minimizes the A − 1

equations (21). Here, I follow the approach of Azinovic, Gaegauf, and Scheidegger (2022),

which consists of simulating the model with the current parameter vector θt and using

the draws Ωe to approximate the ergodic distribution for the state vector s, by randomly

sampling from Ωe. The draw Ωe are kept unchanged for a predetermined number of

gradient descent steps. Conditional on Ωe and on the current parameter vector θt, one

can calculate an estimator for the gradient of the loss using equation (14) and update the

value of the parameter vector using an update rule of the form (2). Secondly, the gradient-

free bc-MC operator depends on two hyperparameter M and N , where M denotes the

30

number of independent draws for the state vector s, while N denotes the number of

independent draws for the innovation vector ε for each realization of s. As in Pascal

(2024), I choose the combination (M,N) so that the variance of the bc-MC loss function

(13) is minimized, while keeping a computational budget constant. Because the bc-MC

loss function is unbiased, this is equivalent to minimizing its mean squared error. For my

computational budget, I use a value proportional toMN , which measures the number of

times the function (22) is evaluated, each time the bc-MC loss function is calculated. In

terms of other hyperparameters, I set the step size parameter h = 1.10−5, I use the Adam

minimization algorithm with a learning rate γ = 1.10−3. I also use gradient clipping,

as suggested by Proposition 2. A detailed description of this procedure is available in

Section H of the Appendix.

Before discussing the results, I note that there exists a tight connection between usual ac-

curacy metrics and the practical output of the bc-MC methodology. Typically, accuracy

metrics are based on the unit-less Euler equation error (EEE) for age group h, denoted

by Eh(s|θ). The square root of the mean squared Euler equation error (RMSE), denoted

by Es

[
Eh(s|θ)2

]0.5
, measures the extent to which numerical approximations (θ ̸= θ∗)

leads to pricing errors (see for instance Lettau and Ludvigson, 2009). When the RMSE

is equal to 1.10−3, agents of age group h misallocate $1 for each $1000 they spend. An

interesting feature of the bc-MC computational method, is that the square root of the

loss function, which is calculated during training, can be used to calculate an estimator

of the RMSE. To see that, consider the EEE for age group h:

Eh(s|θ) =
1

cht
(u′)−1

(
Eε

[
βu′(ch+1

t+1)rt+1

])
− 1

=
(
Eε

[
β
(ch+1

t+1

cht

)−γ
rt+1

])−1
γ − 1

(23)

Using the approximation xα ≈ 1+α(x−1) for x ≈ 1, one gets the following approximation

for the square of Eh(s|θ):

Eh(s|θ)2 ≈
1

γ2

(
Eε

[
β
(ch+1

t+1

cht

)−γ
rt+1

]
− 1
)2

(24)

Hence, one obtains

Es

[
Eh(s|θ)2

]0.5 ≈ 1

γ
Es

[(
Eε

[
β
(ch+1

t+1

cht

)−γ
rt+1 − 1

])2]0.5
(25)

31

where the right-hand side of equation (25) can be written as 1
γ
Es

[
Eε

(
fh(s, ε|θ)

)2]0.5
.

By an application of Jensen’s inequality, the average RMSE across age group is (approx-

imately) bounded above by the square root of the bc-MC loss function, estimated using

equation (13), scaled by the factor 1
γ
:

1

A− 1

A−1∑
h=1

Es

[
Eh(s|θ)2

]0.5 ≈ 1

γ

1

A− 1

A−1∑
h=1

Es

[
Eε

(
fh(s, ε|θ)

)2]0.5
≤ 1

γ

(1

A− 1

A−1∑
h=1

Es

[
Eε

(
fh(s, ε|θ)

)2])0.5
≈ 1

γ
LM,N(θ)

0.5

(26)

I now compare the gradient-free bc-MC operator, which uses equation (14) to approxi-

mate the gradient of the bc-MC loss function, to the bc-MC operator, which uses back-

propagation to compute an exact value of the gradient via automatic differentiation,

subject to floating-point precision limitations. For each method, I train 5 different neu-

ral networks, with different initial NN weights. I train the networks for a total of 10000

gradient descent steps, updating the guess for the ergodic distribution every 2000 steps.

Figure 5 presents the results on time and accuracy for the two methods.

The top panel of Figure 5 indicates that the backpropagation-based bc-MC operator (in

red) clearly outperforms in terms of accuracy the gradient-free bc-MC operator (in blue)

in the first 6000 gradient descent steps. However, after this threshold, the gradient-

free bc-MC operator leads to equally accurate solutions. The bottom panel shows that

the gradient-free bc-MC operator is faster than its backpropagation-based counterpart.

Overall, the backpropagation-based bc-MC operator achieves an average Euler equation

error (EEE) of 1.62 × 10−4 for a total computing time of about 101 seconds, while its

gradient-free counterpart yields an average EEE of 1.78 × 10−4 in about 93 seconds,

as indicated in Table 1. For this particular example, taking into account both time

32

and accuracy, the gradient-free bc-MC operator outperforms its backpropagation-based

counterpart.

Figure 5. Comparison of gradient-based and gradient-free bc-MC oper-

ators for the smooth OLG model

(a) Value loss function during training

1e−06

1e−03

1e+00

0 2500 5000 7500 10000
Gradient Descent Steps

A
bs

ol
ut

e
Lo

ss
 (

lo
g1

0
sc

al
e)

Mean P10 P90 name BC−MC Operator Gradient−Free BC−MC Operator

(b) Required computing time

0

25

50

75

100

0 2500 5000 7500 10000
Gradient Descent Steps

E
la

ps
ed

 T
im

e
(s

ec
)

Mean P10 P90 name BC−MC Operator Gradient−Free BC−MC Operator

Notes. This figure compares the bc-MC operator and the gradient-free bc-MC operator in learning the policy

function that satisfies the Euler equation (21). The first approach uses the gradient of the bc-MC loss function,

denoted as ∇θLM,N (θ), while the second approximates the gradient using ∇θLF
M,N (θ) from equation (14).

Solid lines represent average values from 5 independent replications, each with different initial NN weights.

Shaded areas indicate the P10-P90 inter-percentile range. Panel A shows the loss function value relative to the

number of gradient descent steps, and Panel B shows the computing time relative to the number of gradient

descent steps. Vertical dotted lines mark the start of a new “episode”, corresponding to a new estimation of

the ergodic distribution.

33

Table 1. Comparison of gradient-based and gradient-free bc-MC opera-

tors for the smooth OLG model

Method Value Loss Mean EEE P50 EEE Max EEE Comp. time

bc-MC 4.75× 10−8 1.62× 10−4 1.31× 10−4 1.33× 10−3 100.90 sec

gradient-free bc-MC 4.96× 10−8 1.78× 10−4 1.38× 10−4 1.49× 10−3 93.10 sec

Notes. This table compares the bc-MC operator and the gradient-free bc-MC operator in learning the

policy function that satisfies the Euler equation (21). Descriptive statistics for each method are based

on 5 independent replications, each with different initial NN weights. Each network is trained over

10,000 gradient descent steps, spanning a total of 5 “episodes”. An “episode” corresponds to a new

estimation of the ergodic distribution, where the current NN is used to simulate the model. The Euler

equation error (EEE) is calculated using equation (23), with NN weights selected based on the smallest

loss during training, once the episode number exceeds a pre-determined threshold. This threshold, set

at 3 in this study, ensures that the state vector distribution has converged to its ergodic distribution.

4.3. An OLG model with non-differentiabilities. I now solve an OLG model with

non-differentiabilities created by a borrowing constraint. The model is similar to the one

presented in the previous section, except in two key aspects. First, I adapt the process of

exogenous stochastic variables to be more in line with the RBC literature. In particular,

the logarithm exogenous productivity ηt parameter is now assumed to follow an AR(1)

process: log(ηt+1) = ρ log(ηt) + εη,t+1, where εη is an i.i.d. zero-mean normal variable

with variance given by σ2
η. I also now assume that the depreciation rate is deterministic,

which can be interpreted as the limit case of the previous section with σδ tending to

zero. As a result, the relevant state vector at time t is now s = (yt, ηt), where yt

still denotes the vector of total available wealth at the beginning of period t, while the

relevant exogenous innovation vector is now the one-dimensional vector ε = (εη,t+1).

The second key difference is the presence of a borrowing constraint for households: aht ≥
0,∀h ∈ {1, ..., A}. The optimization problem faced by households is now characterized by

34

the following system of Karush–Kuhn–Tucker (KKT) conditions, for h ∈ {1, 2, ..., A−1}:

(cht)
−γ = Eε

[
β(ch+1

t+1)
−γrt+1

]
+ λht

λht ≥ 0

aht ≥ 0

λht a
h
t = 0

cht + aht = rtk
h
t + wtl

h ≡ yht

(27)

where λht are Lagrange multipliers associated with the inequality constraint on asset

holdings.

To solve this model using neural networks, one approach could consist of using an MLP

that outputs both cht and λht and to take into the KKT constraints by adding some extra

penalty function to the loss function, as for instance in Maliar and Maliar (2022) or

Pascal (2024). With this approach, taking into account the different age groups, the

MLP would be a mapping from from RA to R2(A−1).

Instead, I choose a more economical approach, based on insights from the literature

on the Parameterized Expectation Algorithm (PEA) applied to models with inequality

constraints, as described by Marcet and Lorenzoni (2001). The key idea from the PEA

literature is that if one knows the conditional expectation Eη

[
β(ch+1

t+1)
−γrt+1

]
and if the

Lagrange multiplier λht is equal to zero, then one can get current consumption cht using

the inverse of the marginal utility of consumption (u′)−1(ct) = c
− 1

γ

t . In practice, one may

start by assuming that λht = 0 and calculate the consumption that this would imply c̃ht ,

which leads to an implied savings decision ãht using the budget constraint. If ãht > 0,

the budget constraint is not binding (λht = 0) and one may set cht = c̃ht , a
h
t = ãht . If

ãht is negative, it means that the budget constraint is binding (λht > 0) and one gets a

consumption implied by the budget constraint: cht = rtk
s
t + wtl

s, aht = 0.

In the PEA literature, this approach is generally implemented by using linear model to

approximate the conditional expectation sTt θ
(n) ≈ Eη

[
β(ch+1

t+1)
−γrt+1

]
, where st denotes

the value of the state vector at time t. By using the procedure discussed above, the cur-

rent guess of the conditional expectation implies a series of actual realizations for the “tar-

get variable” inside the conditional expectation operator: {ϕt+1}Tt=1 = {β(ch+1
t+1)

−γrt+1}Tt=1.

One may then update the guess for θ using the OLS solution of a linear regression of

35

ϕt+1 on S, to get an updated value for θ(n+1) = c(S ′S)−1S ′ϕt+1 + (1− c)θ(n), where c

is a coefficient between 1 and 0, while S is the data matrix build from T observations of

the state vector st.

I now explain how one may use a similar strategy with neural networks and the bc-MC

operator LM,N(θ), which provides an unbiased estimator of L(θ) = Es

[
Eε

(
f(s, ε|θ)

)2]
.

If one assumes that the bc-MC residual function f can be decomposed as f(s, ε|θ) =

g(s, ε|θ) − h(s|θ), the loss function becomes Es

[[
Eε

(
g(s, ε|θ)

)
− h(s|θ)

]2]
. Clearly,

this loss function is minimized when the function h(s|θ) is equal to the conditional

expectation Eε

(
g(s, ε|θ)

)
. This has the flavor of the PEA, except that the function h(.) is

not restricted to being a linear function of the state vector s. In particular, one may use a

non-linear MLP to generates guesses for the conditional expectations Eη

[
β(ch+1

t+1)
−γrt+1

]
,

for h ∈ {1, 2, ..., A − 1}. Then, one may proceed as previously described. That is, by

first assuming that λht = 0, we get c̃ht using (u′)−1(ct) = c
−1/γ
t . If ãht > 0, and one may set

cht = c̃ht , a
h
t = ãht , and λ

h
t is indeed equal to 0. If ãht is negative, cht = rtk

s
t + wtl

s, aht = 0,

and λht > 0. These implied policy functions, combined with the transition process for η,

lead to actual realizations for the function g(s, ε|θ) = β(ch+1
t+1)

−γrt+1.

For this neural network based approach to work well in practice, I apply some trans-

formations to the raw output of an MLP. The guess for the conditional expectation is

given by h(s|θ) =
[(s(MLP(yt|θ)

)
1

)
⊙yt

]−γ

, where s(x) = log(1+exp(x)) > 0 is the

softplus function, which provides a smooth approximation to max(0, x). This particular

functional form leads to an implied consumption choice of c̃ht = s
(
MLPh(yt|θ)

)
yht for

h ̸= A− 1, while the last generation consumes all their disposable income. The softplus

function ensures that consumption remains strictly positive, while also allowing for the

possibility that c̃ht exceeds yht , hence leading to ãht being negative and for corner solutions

to occur (cht = rtk
s
t + wtl

s, aht = 0, and λht > 0).

In this setting, Proposition 2 applies, but Proposition 3 does not. This follows from

the presence of a borrowing constraint, expressed as aht = max(ãht , 0). The function

x → max(x, 0) has a kink at x = 0, making it non differentiable at this point. This

non-smoothness propagates to the bc-MC loss function, implying that it does not have

a derivative with respect to θ on the set of points for which ãht (θ) is zero. However,

the function x → max(x, 0) is Lipschitz continuous, with Lipschitz constant equal to

36

1. Provided that the MLP’s parameter vector θ lies within a compact set in Rn, the

bc-MC loss function is also Lipschitz continuous, because it involves a finite composition

of Lipschitz mapping on a bounded set.8

As in the previous section, I compare the gradient-free bc-MC operator, which uses

equation (14) to approximate the gradient of the bc-MC loss function, to the bc-MC

operator, which uses backpropagation to compute a highly accurate gradient estimate

(subject to floating-point precision limitations). For the gradient-based bc-MC operator

implementation, I ignore the potential non-differentiable issues discussed above. In terms

of economic parameters, I still set the capital share parameter to α = 0.3 and use

a discount factor β = 0.7. One notable difference from the previous section is that

households now work for approximately two thirds of their life (ls = 1, ∀s ∈ {1, ..., 14}),
before retiring (ls = 0,∀s ∈ {15, ..., 20}). This creates an endogenous incentive for young

households to borrow against future labor income. For the productivity parameter, I use

a persistence parameter of 0.95 and a standard deviation parameter of ση = 0.01, which

are common parameter values for models at the quarterly frequency. I set the quarterly

depreciation rate to δ = 0.1, which is higher than the usual value of 0.025, typically used

for quarterly data. This ensures that the borrowing constraint binds for some households.

Regarding the architecture of the MLP, I still use a MLP with 2 hidden layers with

25 nodes each. For the parameter vector update rule, I use the Adam minimization

algorithm with a learning rate γ = 1.10−5. When using the gradient-free version of the

bc-MC operator, I set the step size parameter h = 1.10−5. For each method, I train

5 different neural networks. I train the networks for a total of 10000 gradient descent

steps, updating the guess for the ergodic distribution every 2000 steps. Before the actual

training phase, I pre-train the neural networks so that they reproduce the policy functions

of the model linearized at first order, ignoring non-differentiabilities issues caused by the

borrowing constraint. To obtain this approximate linearized model, I use Dynare and

add equations min(λht , a
h) = 0 to Dynare’s .mod file, to approximately take into account

8One could derive a formal proof of this fact, along the lines of the arguments presented in Appendices

D - F.

37

borrowing constraints. This provides a reasonable starting value for the parameter vector

θ.

Regarding the bc-MC hyperparametersM and N , as in the previous section, I make sure

that the value MN is constant during training, which ensures that the total number of

functions evaluations for f(s, ε|θ) remains constant when evaluating the bc-MC loss.

Here, I use MN = 400. However, numerical experiments indicate that the required

computing time for the bc-MC loss function increases with N , even when MN constant.

This is because N leads to a less sparse matrix Σ in equation (13). To ensure that

computing time differences between gradient-based and gradient-free bc-MC operators

are not driven by this mechanism, I use the same path for N in both instances.9 In

practice, I start with a value N = 2 in the early stages of learning, while increasing it up

to N = 20 as learning progresses. This path resembles the optimal path for N , obtained

by minimizing the variance of the loss function when using the gradient-based version of

the bc-MC operator.

I now compare time and accuracy results obtained using the backpropagation-based bc-

MC operator and the gradient-free bc-MC operator. To measure accuracy, I still the

Euler equation error (EEE) based on equation, but modified to take into account that

when borrowing constraint binds, the household consumes all her available cash on hand:

Eh(s|θ) =
1

cht
(u′)−1

[
max

(
Eε

[
βu′(ch+1

t+1)rt+1

]
, u′(yht)

)]
− 1 (28)

Results regarding time and accuracy for the two methods are presented in Figure 5

and Table 2. Figure 5 shows that while training based on the backpropagation-based

bc-MC operator leads to initially lower values for the loss function, the gradient-free

bc-MC operator ends up yielding similar results. Overall, Table 2 shows that while the

backpropagation-based bc-MC operator is slightingly more accurate, it is slower than its

gradient-free counterpart.

Table 3 indicates that the backpropagation-based bc-MC operator and the gradient-

free counterpart yield similar descriptive statistics for key aggregate variables. In both

cases, they (marginally) lead to an increase in aggregate capital accumulation, because

of precautionary savings motives, compared to the first order linear approximation. As

9Results from Section 4.2 are not affected by this mechanism, since N = N∗ = 2 during training for

both methodologies.

38

a result, aggregate production is marginally higher and the interest rate lower. These

global solution methods lead to positive skewness in simulated series, which is absent from

the first order solution, as linearized models are symmetric around the non-stochastic

steady-state.

39

Figure 6. Comparison of gradient-based and gradient-free bc-MC oper-

ators for the OLG model with borrowing constraint

(a) Value loss function during training

1e−08

1e−07

1e−06

1e−05

0 2500 5000 7500 10000
Gradient Descent Steps

A
bs

ol
ut

e
Lo

ss
 (

lo
g1

0
sc

al
e)

Mean name BC−MC Operator Gradient−Free BC−MC Operator

(b) Required computing time

0

50

100

150

0 2500 5000 7500 10000
Gradient Descent Steps

E
la

ps
ed

 T
im

e
(s

ec
)

Mean P10 P90 name BC−MC Operator Gradient−Free BC−MC Operator

Notes. This figure compares the bc-MC operator and the gradient-free bc-MC operator in learning the

policy function that solves the non-smooth OLG model. The first approach uses the gradient of the bc-MC

loss function, denoted as ∇θLM,N(θ), while the second approximates the gradient using ∇θLF
M,N (θ) from

equation (14). Solid lines represent average values from 5 independent replications. Shaded areas indicate

the P10-P90 inter-percentile range. Panel A shows the loss function value relative to the number of gradient

descent steps, and Panel B shows the computing time relative to the number of gradient descent steps. Vertical

dotted lines mark the start of a new “episode”, corresponding to a new estimation of the ergodic distribution.

40

Table 2. Comparison of gradient-based and gradient-free bc-MC opera-

tors for the OLG model with borrowing constraint

Method Value Loss Mean EEE P50 EEE Max EEE Comp. time

bc-MC 2.06× 10−9 3.15× 10−4 1.22× 10−4 4.83× 10−3 145.27 sec

gradient-free bc-MC 3.59× 10−9 3.78× 10−4 1.74× 10−4 5.13× 10−3 136.56 sec

Notes. This table compares the bc-MC operator and the gradient-free bc-MC operator in learning the

policy function that solves the non-smooth OLG model. Descriptive statistics for each method are based

on 5 independent replications. Each network is trained over 10,000 gradient descent steps, spanning a

total of 5 “episodes”. An “episode” corresponds to a new estimation of the ergodic distribution, where

the current NN is used to simulate the model. The Euler equation error (EEE) is calculated using

equation (28), with NN weights selected based on the smallest loss during training, once the episode

number exceeds a pre-determined threshold. This threshold, set at 3 in this study, ensures that the

state vector distribution has converged to its ergodic distribution.

41

Table 3. Descriptive statistics

Variable Statistic Linearized bc-MC gf-bc-MC

Aggregate capital K Mean 6.47 6.48 6.48

Std. Dev. 0.30 0.29 0.29

Skewness 0.02 0.15 0.16

Aggregate output Y Mean 11.11 11.13 11.12

Std. Dev. 0.50 0.50 0.50

Skewness 0.01 0.16 0.16

Interest rate r Mean 1.42 1.41 1.41

Std. Dev. 0.01 0.01 0.01

Skewness 0.00 0.04 0.02

Wage w Mean 0.56 0.56 0.56

Std. Dev. 0.02 0.02 0.02

Skewness 0.01 0.16 0.16

Notes. This table compares descriptive statistics for the life-cycle dynamics OLG model with borrowing

constraint, obtained using three different solution methods. The first column is for the model linearized

at first order, using Dynare, ignoring non-differentiabilities issues caused by the borrowing constraint.

To obtain this approximate linearized model, I use Dynare and add equations min(λh
t , a

h) = 0 to

Dynare’s .mod file. The two other columns are for the bc-MC operator and the gradient-free bc-MC

operator (“gf-bc-MC”). Calculations are based on 100,000 periods..

4.4. Connection with the Parameterized Expectation Algorithm. The previous

section suggests that the bc-MC operator and the Parameterized Expectation Algorithm

(PEA) are closely related. In this section, I clarify these links, and show that the former

can be interpreted as a generalization of the latter. In particular, I show that when a pa-

rameterized expectations approach is used with the bc-MC operator, the gradient of the

bc-MC loss function and the gradient of PEA’s loss function are equal in a neighborhood

of a solution for the parameter θ.

For simplicity, consider an economic model characterized by a single functional equation

and let us set the bc-MC hyperparameter N = 2, which implies using two independent

innovation vectors (ε1m and ε2m) for each realization of the state vector sm. In that case,

42

the bc-MC loss function is given by:

LM,2(θ) =
1

M

M∑
m=1

f(sm, ε
1
m|θ)f(sm, ε2m|θ) (29)

As in the previous section, let us assume that the function f can be decomposed

as f(sm, ε
i
m|θ) = g(sm, ε

i
m|θ) − h(sm|θ), which implies that when the loss function

(29) is minimized at θ∗, h(sm|θ∗) is an unbiased estimator of the conditional mean

Eε

(
g(sm, ε|θ∗)

)
. If the function h(.) is assumed to be a linear function of the state

vector, minimizing equation (29) amounts to finding a linear function sTmθ that best

predicts (in the mean squared sense) the value of g(sm, ε|θ). This closely resembles the

description of the PEA, as previously mentioned.

However, there exist two differences with the PEA. To see that, first consider the gradient

of the loss function (29) with respect to the parameter vector θ, assuming that the

function h(.) is a linear function of the state vector:

∇θLM,2(θ) =
−2

M

M∑
m=1

sm

[g(sm, ε1m|θ) + g(sm, ε2m|θ)
2

− sTmθ
]

+
1

M

M∑
m=1

∇θg(sm, ε1m|θ)
[
g(sm, ε2m|θ)− sTmθ

]
+∇θg(sm, ε2m|θ)

[
g(sm, ε1m|θ)− sTmθ

]
(30)

The first line of equation (30) corresponds to the gradient of the OLS minimization

problem of regressing the average value ḡ(sm|θ) ≡ g(sm,ε1m|θ)+g(sm,ε2m|θ)
2

on sm. Thus, if

one were to ignore the second line of equation (30), the bc-MC operator, when combined

with a linear model (h(sTm|θ) = sTmθ), is equivalent to using the PEA where the depend

variable in the OLS regression is an average of two realizations of a “target variable”

one aims to predict. These two realizations are based on two independent innovation

shocks for each value of the state vector sm. Instead, the PEA uses a single realization

g(sm, εm|θ) for each draw of the state vector sm, leading to the following expression for

the gradient of the PEA’s loss function:

∇θLPEA
M (θ) =

−2

M

M∑
m=1

sm

[
g(sm, εm|θ)− sTmθ

]
(31)

Since ḡ(sm|θ) and g(sm, εm|θ) are estimates of the sample mean estimator, both of

them provide unbiased estimates for the true (unobservable) target Eε

[
g(sm, ε|θ)

]
. Yet,

because the variance of the sample mean is inversely proportional to the number of

43

observations, the variance of the former is half that of the latter. This matters, because

variance-reduction schemes have been shown to improve convergence speed in gradient-

descent-based minimization problems (Hofmann et al., 2015).

The second line of equation (30) constitutes the second difference between the (gradient-

free) bc-MC operator and the PEA. The bc-MC operator accounts for the target being

obtained via simulation and as a result also depends on the current value of the parameter

vector θ. When using the PEA, this dependence is simply ignored.

However, the omission of this feedback effect of θ on the gradient of the loss can be

interpreted as an asymptotically valid approximation. To see this, note that the second

line of equation (30) vanishes in expectation when θ is equal to its true value θ∗. Indeed,

assume that the conditional expectation is correctly specified by a linear function h(sm |
θ∗) = sTmθ

∗, so that Eε

[
g(sm, ε

i | θ∗)
]
= sTmθ

∗. Under standard regularity conditions,

differentiating this equality with respect to θ and interchanging differentiation with

expectation yields:

∇θ Eε

[
g(sm, ε

i | θ∗)
]
= Eε

[
∇θg(sm, ε

i | θ∗)
]
= ∇θ

[
sTmθ

]∣∣∣
θ=θ∗

= sm

As a result, when forming the second line in (30), the terms ∇θg(sm, ε
i
m | θ∗)

[
g(sm, ε

j
m |

θ∗)− sTmθ
∗
]
have zero expectation, since by standard properties of OLS estimators, the

OLS residuals g(sm, ε
i | θ∗)− sTmθ

∗ are uncorrelated with dependent variables sm. This

observation justifies the use of stochastic gradient descent, or its variants, with the

approximate gradient only given by the first line of equation (30). If a solution θ∗ is

found using the approximate gradient, it is also a solution of the true gradient ∇θLM,2(θ).

The results of this section, based on the case N = 2, can be extended to the general case

(N ≥ 2). Instead of using two draws to calculate ḡ(sm|θ), one uses N independent draws

ḡ(sm|θ) = 1
N

∑N
i=1 g(sm, ε

i
m|θ) in equation (30), as explained in Appendix J. Hence, if

one uses a linear model for the function h(.), one may use the following asymptotically

accurate approximation to gradient of the bc-MC operator:

∇θLPEA
M,N(θ) =

−2

M

M∑
m=1

sm

[1

N

N∑
i=1

g(sm, ε
i
m|θ)︸ ︷︷ ︸

≡ḡ(sm|θ)

−sTmθ
]

(32)

44

This “bc-MC-PEA” operator constitutes an alternative to the gradient-free bc-MC es-

timator based on randomized directional derivative estimators. In particular, one may

simply replace equation (14) with equation (32) in the general N∗-algorithm described

in Appendix H. This procedure based on the bc-MC-PEA operator requires only MN

forward evaluations of the function f(·), with no need for using the backpropagation

algorithm. It can be interpreted as an extension to the PEA, because setting N = 1

results in the usual PEA, described by equation (31).

This methodology based on the bc-MC-PEA operator is less general than the one based

on the gradient-free bc-MC operator, because it requires (i) feasibility of a parameterized

expectation approach and (ii) linearity of the conditional expectation function h(.). On

the one hand, feasibility of a parameterized expectation approach might be restrictive

for some applications. In the present context, this is the assumption that the function

f can be decomposed as f(sm, ε
i
m|θ) = g(sm, ε

i
m|θ) − h(sm|θ). For example, such a

decomposition does not exist with the recursive preferences of Epstein and Zin (1989).

However, the general methodology described in Section 3 does not rely on this assumption

and can accommodate Epstein-Zin preferences.10

On the other hand, linearity of h(.) might not be too restrictive in practical applications,

as one may use transformations of the state vector, denoted by b(sm), for which the

approximation h(b(sm)T |θ) ≈ b(sm)Tθ is a better fit. In the PEA literature, this is

generally achieved by using power or logarithmic transformations of the state vector,

and/or by creating interaction terms between elements of the state vector. However, one

drawback of this approach is that it requires taking a stance on the appropriate form for

the relevant features of the data. This is not the case when using MLPs, as they have the

capacity to automatically detect the relevant features of the data. Additionally, one may

also have to deal with (near) multicollinearity when using the transformed state vector

b(sm). These drawbacks may be offset by a reduction in required computing time, as

the gradient-free bc-MC operator requires 2MN evaluations of the function f(.), twice

as many as those required for the bc-MC-PEA operator described here. Because it is not

10Azinovic, Gaegauf, and Scheidegger, 2022 solve a Bewley (1977) model with aggregate uncertainty

and Epstein-Zin preferences using neural networks. An MLP jointly approximate value and policy

functions.

45

the main focus of this paper, I leave a precise numerical investigation of the bc-MC-PEA

operator for future research.

5. Conclusion

In this paper, I develop a new methodology for finding global solutions of high-

dimensional economic models using neural networks without requiring the backprop-

agation algorithm. This methodology is based on the gradient-free bias-corrected Monte

Carlo (bc-MC) operator, which extends the work of Pascal (2024) to the non-smooth

case. The proposed methodology does not require exact computation of the gradient of

the loss function characterizing the solution of an economic model. Instead, gradients of

the loss function are approximated using directional derivatives along random directions

drawn from a standard normal distribution. Directional derivatives can be easily calcu-

lated, even in high-dimensional settings, which is often the case when neural networks

are involved. The resulting gradient-free bc-MC operator can be used to solve economic

models using neural networks when automatic differentiation software is unavailable or

not feasible due to non-differentiabilities. This method is also well-suited for situations

where memory limitations prevent the use of backpropagation, which requires storing all

intermediate operations.

In this paper, I examine key theoretical properties of the gradient-free bc-MC operator.

In particular, I demonstrate that, under certain conditions stated in the paper, the

gradient-free bc-MC operator is asymptotically an unbiased estimator of the gradient

of the loss function. I also demonstrate the broad applicability of this methodology

by solving large-scale overlapping generation (OLG) models with aggregate uncertainty,

including scenarios involving borrowing constraints that introduce non-differentiabilities

in households’ optimization problems. When solving the OLG model with occasionally

binding constraints (OBCs), I use an efficient scheme that treats Lagrange multipliers as

residual variables that can be adjusted ex post, as suggested in earlier applications of the

Parameterized Expectation Algorithm (PEA). In fact, I also observe a strong connection

between the bc-MC operator methodology and the PEA. In a sense, the latter is a special

case of the former.

To conclude, I note that the method presented in this paper is quite general, in the sense

that it does not constrain the type of neural network architecture that can be used to

46

approximate policy or value functions. While using multilayer perceptrons (MLPs) has

been the norm in economic applications, alternative architectures may be used. It would

be particularly interesting to combine the present methodology with Kolmogorov–Arnold

Networks (Liu et al., 2024), recently proposed as a promising alternative to MLPs in

machine learning. Further research is needed to investigate the properties of the “bc-

MC-PEA” methodology proposed in this paper.

References

Abadi, Mart́ın et al. (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. Software available from tensorflow.org. url: https://www.tensorfl

ow.org/.

Adjemian, Stéphane et al. (Apr. 2011). Dynare: Reference Manual Version 4. Dynare

Working Papers 1. CEPREMAP. url: https://ideas.repec.org/p/cpm/dynare/0

01.html.

Azinovic, Marlon, Luca Gaegauf, and Simon Scheidegger (2022). “Deep Equilibrium

Nets”. In: International Economic Review.

Baydin, Atılım Güneş et al. (2022). “Gradients without backpropagation”. In: arXiv

preprint arXiv:2202.08587.

Beck, Pierre et al. (2024). “Deep learning solutions of DSGE models: a technical report”.

In: BCL Working Papers n°184.

Berahas, Albert S et al. (2022). “A theoretical and empirical comparison of gradient

approximations in derivative-free optimization”. In: Foundations of Computational

Mathematics 22.2, pp. 507–560.

Bewley, Truman (1977). “The permanent income hypothesis: A theoretical formulation”.

In: Journal of Economic Theory 16.2, pp. 252–292. issn: 0022-0531. doi: https://d

oi.org/10.1016/0022-0531(77)90009-6. url: https://www.sciencedirect.com

/science/article/pii/0022053177900096.

Brock, William A and Leonard J Mirman (1972). “Optimal economic growth and uncer-

tainty: the discounted case”. In: Journal of Economic Theory 4.3, pp. 479–513.

Brumm, Johannes and Simon Scheidegger (2017). “Using adaptive sparse grids to solve

high-dimensional dynamic models”. In: Econometrica 85.5, pp. 1575–1612.

47

Christiano, Lawrence J and Jonas DM Fisher (2000). “Algorithms for solving dynamic

models with occasionally binding constraints”. In: Journal of Economic Dynamics and

Control 24.8, pp. 1179–1232.

Den Haan, Wouter J. and Albert Marcet (1990). “Solving the Stochastic Growth Model

by Parameterizing Expectations”. In: Journal of Business and Economic Statistics 8.1,

pp. 31–34. issn: 07350015. url: http://www.jstor.org/stable/1391746 (visited

on 06/13/2024).

Duarte, Victor, Diogo Duarte, and Dejanir H. Silva (2024).Machine Learning for Continuous-

Time Finance. CESifo Working Paper Series 10909. CESifo. url: https://ideas.re

pec.org/p/ces/ceswps/_10909.html.

Duffy, John and Paul D McNelis (2001). “Approximating and simulating the stochastic

growth model: Parameterized expectations, neural networks, and the genetic algo-

rithm”. In: Journal of Economic Dynamics and Control 25.9, pp. 1273–1303. issn:

0165-1889. doi: https://doi.org/10.1016/S0165-1889(99)00077-9. url: https:

//www.sciencedirect.com/science/article/pii/S0165188999000779.

Epstein, Larry G. and Stanley E. Zin (1989). “Substitution, Risk Aversion, and the

Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework”.

In: Econometrica 57.4, pp. 937–969. issn: 00129682, 14680262. url: http://www.js

tor.org/stable/1913778 (visited on 01/27/2025).

Farhi, Emmanuel and Iván Werning (2017). “Fiscal Unions”. In: American Economic

Review 107.12, 3788–3834. doi: 10.1257/aer.20130817. url: https://www.aeaweb

.org/articles?id=10.1257/aer.20130817.

Fernández-Villaverde, Jesús, Juan Francisco Rubio-Ramı́rez, and Frank Schorfheide (2016).

“Solution and estimation methods for DSGE models”. In: Handbook of Macroeco-

nomics. Vol. 2. Elsevier, pp. 527–724.

Fernández-Villaverde, Jesús, Samuel Hurtado, and Galo Nuño (2023). “Financial Fric-

tions and the Wealth Distribution”. In: Econometrica 91.3, pp. 869–901. doi: https:

//doi.org/10.3982/ECTA18180. eprint: https://onlinelibrary.wiley.com/doi

/pdf/10.3982/ECTA18180. url: https://onlinelibrary.wiley.com/doi/abs/10

.3982/ECTA18180.

Fernández-Villaverde, Jesús, Galo Nuño, and Jesse Perla (2024). Taming the Curse of

Dimensionality: Quantitative Economics with Deep Learning. Working Paper 33117.

48

National Bureau of Economic Research. doi: 10.3386/w33117. url: http://www.nb

er.org/papers/w33117.

Folini, Doris et al. (Jan. 2024). “The Climate in Climate Economics”. In: The Review of

Economic Studies, rdae011. issn: 0034-6527. doi: 10.1093/restud/rdae011. eprint:

https://academic.oup.com/restud/advance-article-pdf/doi/10.1093/restud

/rdae011/56663801/rdae011.pdf. url: https://doi.org/10.1093/restud/rdae0

11.

Hofmann, Thomas et al. (2015). “Variance Reduced Stochastic Gradient Descent with

Neighbors”. In: Advances in Neural Information Processing Systems. Ed. by C. Cortes

et al. Vol. 28. Curran Associates, Inc. url: https://proceedings.neurips.cc/pap

er_files/paper/2015/file/effc299a1addb07e7089f9b269c31f2f-Paper.pdf.

Huffman, Gregory W. (1987). “A Dynamic Equilibrium Model of Asset Prices and Trans-

action Volume”. In: Journal of Political Economy 95.1, pp. 138–159. issn: 00223808,

1537534X. url: http://www.jstor.org/stable/1831303 (visited on 06/24/2024).

Judd, Kenneth L et al. (2014). “Smolyak method for solving dynamic economic models:

Lagrange interpolation, anisotropic grid and adaptive domain”. In: Journal of Eco-

nomic Dynamics and Control 44, pp. 92–123.

Kaplan, Greg, Benjamin Moll, and Giovanni L Violante (2018). “Monetary policy ac-

cording to HANK”. In: American Economic Review 108.3, pp. 697–743.

Krueger, Dirk and Felix Kubler (2004). “Computing equilibrium in OLG models with

stochastic production”. In: Journal of Economic Dynamics and Control 28.7, pp. 1411–

1436.

Krusell, Per and Anthony A Smith Jr (1998). “Income and wealth heterogeneity in the

macroeconomy”. In: Journal of political Economy 106.5, pp. 867–896.

Lettau, Martin and Sydney C. Ludvigson (2009). “Euler equation errors”. In: Review of

Economic Dynamics 12.2, pp. 255–283. issn: 1094-2025. doi: https://doi.org/10

.1016/j.red.2008.11.004. url: https://www.sciencedirect.com/science/arti

cle/pii/S1094202508000616.

Liu, Ziming et al. (2024). “Kan: Kolmogorov-arnold networks”. In: arXiv preprint arXiv:2404.19756.

Maliar, Lilia and Serguei Maliar (2022). “Deep learning classification: Modeling discrete

labor choice”. In: Journal of Economic Dynamics and Control 135, p. 104295.

Maliar, Lilia, Serguei Maliar, and Pablo Winant (2021). “Deep learning for solving dy-

namic economic models.” In: Journal of Monetary Economics 122, pp. 76–101.

49

Marcet, Albert and Guido Lorenzoni (Oct. 2001). “The Parameterized Expectations Ap-

proach: Some Practical Issues”. In: Computational Methods for the Study of Dynamic

Economies. Oxford University Press. isbn: 9780199248278. doi: 10.1093/01992482

73.003.0007. eprint: https://academic.oup.com/book/0/chapter/193307872

/chapter-ag-pdf/44625550/book_25747_section_193307872.ag.pdf. url:

https://doi.org/10.1093/0199248273.003.0007.

Marchiori, Luca and Olivier Pierrard (2015). LOLA 3.0: Luxembourg OverLapping gen-

eration model for policy Analysis: Introduction of a financial sector in LOLA. Banque

centrale du Luxembourg.

Mitra, Tapan and Santanu Roy (2017). “Optimality of Ramsey–Euler policy in the sto-

chastic growth model”. In: Journal of Economic Theory 172, pp. 1–25. issn: 0022-0531.

doi: https://doi.org/10.1016/j.jet.2017.08.001. url: https://www.scienced

irect.com/science/article/pii/S0022053117300790.

Nesterov, Yu (2005). “Lexicographic differentiation of nonsmooth functions”. In: Math-

ematical programming 104, pp. 669–700.

Nesterov, Yurii and Vladimir Spokoiny (2017). “Random gradient-free minimization of

convex functions”. In: Foundations of Computational Mathematics 17.2, pp. 527–566.

Pascal, Julien (2024). “Artificial neural networks to solve dynamic programming prob-

lems: A bias-corrected Monte Carlo operator”. In: Journal of Economic Dynamics and

Control 162, p. 104853. issn: 0165-1889. doi: https://doi.org/10.1016/j.jedc.2

024.104853. url: https://www.sciencedirect.com/science/article/pii/S0165

188924000459.

Paszke, Adam et al. (2017). “Automatic differentiation in PyTorch”. In: NIPS-W.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning rep-

resentations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.

Scheidegger, Simon and Ilias Bilionis (2019). “Machine learning for high-dimensional

dynamic stochastic economies”. In: Journal of Computational Science 33, pp. 68–82.

issn: 1877-7503. doi: https://doi.org/10.1016/j.jocs.2019.03.004. url:

https://www.sciencedirect.com/science/article/pii/S1877750318306161.

Scheinberg, Katya (2022). “Finite difference gradient approximation: To randomize or

not?” In: INFORMS Journal on Computing 34.5, pp. 2384–2388.

50

Schmitt-Grohé, Stephanie and Martın Uribe (2004). “Solving dynamic general equilib-

rium models using a second-order approximation to the policy function”. In: Journal

of Economic Dynamics and Control 28.4, pp. 755–775.

Silver, David et al. (2022). “Learning by Directional Gradient Descent”. In: International

Conference on Learning Representations. url: https://api.semanticscholar.org

/CorpusID:251649228.

Smolyak, Sergei Abramovich (1963). “Quadrature and interpolation formulas for tensor

products of certain classes of functions”. In: Doklady Akademii Nauk. Vol. 148. 5.

Russian Academy of Sciences, pp. 1042–1045.

Valaitis, Vytautas and Alessandro T Villa (2024). “A machine learning projection method

for macro-finance models”. In: Quantitative economics 15.1, pp. 145–173.

Zhang, Jingzhao et al. (2020). “Why Gradient Clipping Accelerates Training: A Theo-

retical Justification for Adaptivity”. In: International Conference on Learning Repre-

sentations. url: https://openreview.net/forum?id=BJgnXpVYwS.

51

Appendix

Appendix A. Proof proposition 1

Let us consider the vector-valued function g : Rn → Rn defined as:

g(θ) = Dvf(θ)v

where v is a normally distributed random vector in Rn with zero mean and a variance-

covariance matrix given by the identity matrix In.

Let us fix the value of θ in Rn. Because f is differentiable at θ by assumption, one can

express the directional derivative as a dot product between the gradient and the vector

v, as in equation (5):

g(θ) = Dvf(θ)v = (∇f(θ) · v)v

Developing the formula ∇f(θ) ·v and taking the expectation with respect to the random

vector v yields:

E
[
g(θ)

]
= E

[(n∑
i=1

∂f(θ)

∂θi
vi
)
v
]

E
[
g(θ)

]
is a vector of size n× 1. The j-th element of this vector can be expressed as:

E
[
gj(θ)

]
= E

[(n∑
i=1

∂f(θ)

∂θi
vi
)
vj
]

=
n∑

i=1

∂f(θ)

∂θi
E
[
vivj

]
where I use the linearity of the expectation operator and the fact that, for a fixed value

of θ, the partial derivatives ∂f(θ)
∂θi

are constant scalar values. Using the formula for the

covariance between two random variables, one obtains:

E
[
vivj

]
= Cov(vi, vj) + E

[
vi
]
E
[
vj
]

The term E
[
vi
]
E
[
vj
]
is equal to 0, because v is a zero-mean random vector. Because

the variance-covariance matrix is the identity matrix, Cov(vi, vj) is 0 for i ̸= j and equal

to 1 when i = j. Hence, E
[
gj(θ)

]
= ∂f(θ)

∂θj
, for all j ∈ 1, 2, ..., n. Since this holds for every

j ∈ {1, 2, . . . , n}, we conclude that E[g(θ)] = ∇f(θ).

52

Appendix B. Proof proposition 2

Let us assume that for all values of the state and innovation vectors, the function

f : Rn → RKMN defined by f(θ) = fθ is Lipschitz continuous on its domain, where n

denotes the dimension of the MLP’s parameter vector. The loss function can be written

as a quadratic form:

LM,N(θ) =
2

KMN(N − 1)
fT
θ Σfθ

where fθ is a column vector of size KMN and Σ is a KMN×KMN matrix with entries

equal to 0 or 1. More specifically, Σ defined as the Kronecker product IK ⊗ Λ, while Λ

is an MN ×MN matrix defined as the Kronecker product IM ⊗UN , with IM being the

M×M identity matrix and UN being an N×N upper triangular matrix whose diagonal

elements are all equal to zero, while the entries above the main diagonal are equal to

one.

Using the fact that xTAx = xT A+AT

2
x, the loss function can be written as:

LM,N(θ) =
1

KMN(N − 1)
fT
θ (Σ + ΣT)fθ

Now, consider two points θ1 and θ2 in Rn. Using the fact that xTBx − yTBy =

(x− y)TB(x+ y) when B is a symmetric matrix, the difference can be written as:

LM,N(θ1)− LM,N(θ2) =
1

KMN(N − 1)

(
fθ1 − fθ2

)T
(Σ + ΣT)

(
fθ1 + fθ2

)
Now, using the fact that f is Lipschtiz continuous and using ∥.∥2 to denote the Euclidean

norm for vectors and the spectral norm for matrices:

∥LM,N(θ1)− LM,N(θ2)∥2 ≤
1

KMN(N − 1)
∥
(
fθ1 − fθ2

)
∥2∥(Σ + ΣT)∥2∥

(
fθ1 + fθ2

)
∥2

≤ 1

KMN(N − 1)
L∥θ1 − θ2∥2∥(Σ + ΣT)∥2∥

(
fθ1 + fθ2

)
∥2

with L ≥ 0 a constant. By construction, Σ = IK ⊗ IM ⊗ UN . Hence, Σ + ΣT =

IK ⊗ IM ⊗
(
UN + UT

N

)
. Using the fact that ∥A ⊗ B∥2 = ∥A∥2∥B∥2, we get ∥Σ +

ΣT∥2 = ∥UN + UT
N)∥2. Note that the spectral norm ∥UN + UT

N∥2 is bounded above by√
∥UN + UT

N∥1∥UN + UT
N∥∞, where ∥A∥1 is equal to the maximum absolute column sum

of the matrix A and ∥A∥∞ is equal to the maximum absolute row sum of the matrix A.

Given the construction of UN , both values are equal to N − 1. Hence, one gets:

∥LM,N(θ1)− LM,N(θ2)∥2 ≤
1

KMN
L∥θ1 − θ2∥2∥

(
fθ1 + fθ2

)
∥2 (33)

53

If the function f is bounded, there exist a real constant B ≥ 0 such that ∥fθ1∥2 ≤ B

and ∥fθ2∥2 ≤ B, yielding:

∥LM,N(θ1)− LM,N(θ2)∥2 ≤
1

KMN
2BL∥θ1 − θ2∥2

which proves that the loss function is indeed Lipschitz continuous, with Lipschitz con-

stant equal to 2BL
KMN

.

Now consider the compact subset D ⊂ Rn. Because f is assumed to be Lipschitz

continuous on Rn, it is also continuous on Rn, and by extension on D ⊂ Rn. Because

a continuous function on a compact set D is bounded and attains a maximum and

minimum on D, there exists a finite constant BD ≥ 0 in R such that ∥fθ1∥2 ≤ BD and

∥fθ2∥2 ≤ BD. Hence, we also get that:

∥LM,N(θ1)− LM,N(θ2)∥2 ≤
1

KMN
2BDL∥θ1 − θ2∥2

which proves that the loss function restricted to D is indeed Lipschitz continuous, with

Lipschitz constant equal to 2BDL
KMN

.

Appendix C. Proof proposition 3

Assume that for all values of the state and innovation vectors, the function ψ : Rn → R
defined by ψ(θ) = LM,N(θ) is Lipschitz continuous and differentiable on its domain.

Let v be a normally distributed random vector in Rn with zero mean and a variance-

covariance matrix given by the identity matrix In. I now show that when the scalar h

tends to 0, the ∇θLF
M,N(θ) is an unbiased estimator of ∇θL(θ).

First, note that the function ∇θLF
M,N(θ) can be compactly written as:

∇θLF
M,N(θ) = Ev

[1
h
LM,N(θ + hv)v

]
= Ev

[LM,N(θ + hv)− LM,N(θ)

h
v
]

because Ev

[
LM,N(θ)v

]
= Ev

[
LM,N(θ)

]
Ev

[
v
]
= LM,N(θ)× 0 = 0.

Lipschitz continuity of the function LM,N for all values of the state and innovation vectors

gives us that the value
LM,N (θ+hv)−LM,N (θ)

h
v is bounded by some integrable function:

∥LM,N(θ + hv)− LM,N(θ)

h
v∥2 ≤ ∥LM,N(θ + hv)− LM,N(θ)

h
∥2∥v∥2

≤ L
h∥v∥2∥v∥2

h
= L∥v∥22

54

where L ≥ 0 is a finite real value. Because v is a normally distributed random vector

in Rn with zero mean and a variance-covariance matrix given by the identity matrix, we

have that Ev

[
∥v∥22

]
= n < +∞, as n denotes the dimension of the MLP’s parameter

vector. Hence, we may use Lebesgue’s dominated convergence theorem to get:

lim
h→0

Ev

[
∇θLF

M,N(θ)
]
= Ev

[
lim
h→0

LM,N(θ + hv)− LM,N(θ)

h
v
]

= Ev

[(
∇θLM,N(θ) · v

)
v
]

= ∇θLM,N(θ)

where the last equality follows from Proposition 1. Hence, we have that

Es,ε

[
lim
h→0

Ev

[
∇θLF

M,N(θ)
]]

= Es,ε

[
∇θLM,N(θ)

]
= ∇θ Es,ε

[
LM,N(θ)

]
= ∇θL(θ)

where the second line follows from another application of Lebesgue’s dominated conver-

gence theorem, while the third line follows from the fact that LM,N(θ) is an unbiased

estimator of L(θ), as shown in Pascal (2024). Here, one may use Lebesgue’s dominated

convergence theorem because LM,N(θ) is bounded by an integrable function. Indeed,

because we assume that LM,N(θ) is both Lipschitz continuous and differentiable on its

domain, the norm of its gradient is bounded by some finite positive value, denoted by

K: ∥∇θLM,N(θ)∥2 ≤ K. Clearly, Es,ε

[
K
]
= K < +∞.

Appendix D. Smooth OLG model: the two-agent case

Let us consider the two-agent version of the OLG model from Section 4.2. The general

A-agent version is treated in Section E of the Appendix. In the two-agent version, the

model is characterized by a single Euler equation

Eεη ,εδ

[
β
(ch+1

t+1

cht

)−γ
rt+1 − 1

]
= 0

where h = 1. Let ˜MLP(yt|θ) = max{τ,min{σ
(
MLP(yt|θ)

)
, 1− τ}} denote the share

of total wealth yt = (y1t , y
2
t) = (wt, rtk

2
t) consumed in period t. The function σ(.) is

the sigmoid activation function, while τ > 0 is a small positive real number, truncating

corner solutions. Here, because there are only two age groups, for a fixed parameter

55

vector θ ∈ Rn, the function y → ˜MLP(yt|θ) is a mapping from R2 to R. For a fixed

value of y ∈ R2, the function θ → ˜MLP(yt|θ) is a mapping from Rn to R.

Consumption of the first age group in period t is given by c1t = ˜MLP(yt|θ)y1t . By

assumption, the same generation next period consumes all their available wealth: c2t =

(1− ˜MLP(yt|θ))rt+1y
1
t . Hence, the Euler equation can be rewritten as

Eεη ,εδ

[
β
(1− ˜MLP(yt|θ)

˜MLP(yt|θ)
)−γ(

rt+1

)1−γ − 1
]
= 0

For the logarithmic utility case (γ = 1), this equation simplifies further to

Eεη ,εδ

[
β

˜MLP(yt|θ)
1− ˜MLP(yt|θ)

− 1
]
= 0

The bc-MC residual function here is f(yt|θ) = β
˜MLP(yt|θ)

1− ˜MLP(yt|θ)
− 1, which in this special

case does not depend on the realization of the innovation vector (εη, εδ).

Let us now analyze the function f and see under which conditions Proposition 2 applies.

In particular, let us assume that the MLP under consideration is Lipschitz continuous

for all values of yt, with Lipschitz constant denoted by L ≥ 0. The conditions under

which the function θ ∈ Rn → MLP(yt|θ) ∈ R is Lipschitz continuous for all values of

yt are expressed in Section F of the Appendix.

First, observe that the function f(x) = max{τ,min{x, 1 − τ}} is Lipschitz continuous

with Lipschitz constant equal to 1, where the function x → max{τ,min{x, 1 − τ}} is

applied element-wise to the vector x. Hence, for two parameter vectors θ1 and θ2 in Rn,

we have

∥ ˜MLP(yt|θ1)− ˜MLP(yt|θ2)∥2 ≤ ∥σ
(
MLP(yt|θ1)

)
− σ

(
MLP(yt|θ2)

)
∥2

≤ 1

4
∥MLP(yt|θ1)−MLP(yt|θ2)∥2

≤ 1

4
L∥θ1 − θ2∥2

where the second line uses the fact the sigmoid function is Lipschitz continuous with

Lipschtiz constant equal to 1
4
, while the third line uses Lipschitz continuity of the MLP,

for all values of yt.

Now, let us analyse the function g(t) = t
1−t

on the interval [τ, 1− τ]. The derivative of g

is given by g′(t) = 1
(1−t)2

, which attains a maximum of 1
(1−τ)2

on [τ, 1−τ]. An application

56

of the mean-value inequality gives us that |g(a) − g(b)| ≤ maxt∈(τ,1−τ) g
′(t)|a − b| =

1
(1−τ)2

|a− b|. Hence, for a fixed value of yt, we have

∥g
(

˜MLP(yt|θ1)
)
− g
(

˜MLP(yt|θ2)
)
∥2 ≤

1

(1− τ)2
∥ ˜MLP(yt|θ1)− ˜MLP(yt|θ2)∥2

≤ L

4(1− τ)2
∥θ1 − θ2∥2

The bc-MC residual function can be written as f(yt|θ) = βg
(

˜MLP(yt|θ)
)
− 1. Hence,

we have proven that when γ = 1 and when the conditions listed in Section F are met,

the function f is Lipschitz continuous with Lipschitz constant given by βL
4(1−τ)2

, for any

value of yt.

Regarding boundedness of f(yt|θ), note that by construction, ˜MLP(yt|θ) reaches a

maximum value equal to 1− τ > 0 and a minimum value equal to τ > 0. Hence, f(yt|θ)
has for maximum β

τ
− 1 and for minimum βτ

1−τ
− 1.

Appendix E. Smooth OLG model: the A-agent case

Let us now consider the OLG model from Section 4.2 with A households, representing

different age groups. An equilibrium is characterized by A − 1 Euler equations. For

h ∈ {1, 2, ..., A− 1}:

Eεη ,εδ

[
β(
ch+1
t+1

cht
)−γrt+1 − 1

]
= 0

As in the previous section, let ˜MLP(yt|θ) = max{τ,min{σ
(
MLP(yt|θ)

)
, 1−τ}} denote

the share of total wealth yt = (y1t , y
2
t , ..., y

A
t) = (wt, rtk

2
t , ..., rtk

A
t) consumed in period t.

Here, because there are A age groups, for a fixed parameter vector θ ∈ Rn, the function

y → ˜MLP(yt|θ) = (˜MLP1(yt|θ), ..., ˜MLPh(yt|θ), ..., ˜MLPA−1(yt|θ)) is a mapping

from RA to RA−1. For a fixed value of y ∈ RA, the function θ → ˜MLP(yt|θ) is a

mapping from Rn to RA−1. As before, let us assume that the MLP under consideration

is Lipschitz continuous for all values of yt, with Lipschitz constant denoted by L ≥ 0

(see Section F of the Appendix).

Consumption of age group h in period t is given by cht = ˜MLPh(yt|θ)yht . Consump-

tion of the same generation next period is given by ch+1
t+1 = ˜MLPh+1(yt+1|θ)yh+1

t+1 =

˜MLPh+1(yt+1|θ)
(
1 − ˜MLPh(yt|θ)

)
yht rt+1, because what is not consumed in period t

57

is invested. Hence, the Euler equations can be written as

Eεη ,εδ

[
β
(˜MLPh+1(yt+1|θ)

(
1− ˜MLPh(yt|θ)

)
˜MLPh(yt|θ)

)−γ

r1−γ
t+1 − 1

]
= 0

which simplifies to the following for γ = 1:

Eεη ,εδ

[
β

˜MLPh(yt|θ)
1− ˜MLPh(yt|θ)

1
˜MLPh+1(yt+1|θ)

− 1︸ ︷︷ ︸
≡fh(yt,ε|θ)

]
= 0

For the penultimate age group (h = A− 1), the previous equation simplifies further to

Eεη ,εδ

[
β

˜MLPh(yt|θ)
1− ˜MLPh(yt|θ)

− 1
]
= 0

because the households consume all their remaining savings in their final period. This

equation is similar to the one appearing in Section D of the Appendix, where it was

established that the function θ → β
˜MLPh(yt|θ)

1− ˜MLPh(yt|θ)
−1 is Lipschitz continuous with Lipschitz

constant given by βL
4(1−τ)2

, for any value of yt.

Let us now consider the function fh(yt, ε|θ) for h ̸= A − 1. It is straightforward to see

that ˜MLPh reaches a minimum equal to τ > 0. Thus,
(

˜MLPh

)−1
reaches a maximum

equal to 1
τ
. Hence, ∥fh(yt, ε|θ)∥2 ≤ ∥β ˜MLPh(yt|θ)

1− ˜MLPh(yt|θ)
− 1∥2∥ 1

τ
∥2. It directly follows that,

for h ∈ {1, ..., A − 2}, fh(yt, ε|θ) is Lipschitz continuous, with Lipschitz constant Lh =
βL

4τ(1−τ)2
, for all realizations of the state and innovation vectors.

Hence, the mapping from Rn to RA−1 given by f(yt, ε|θ) = (f1(yt, ε|θ), ..., fA−1(yt, ε|θ))
is itself Lipschitz continuous, with Lipschitz constant given by

(
A−2
τ2

+1
)0.5 βL

4(1−τ)2
. Indeed,

using the Lipschitz constant Lh previously established, one gets, for θ1 and θ2 in Rn

∥f(yt, ε|θ1)− f(yt, ε|θ2)∥2 =
(A−1∑

h=1

|fh(yt, ε|θ1)− fh(yt, ε|θ2)|2
)
0.5

≤
(A−1∑

h=1

L2
h∥θ1 − θ2∥22

)0.5
=
(A−1∑

h=1

L2
h

)0.5
∥θ1 − θ2∥2

=
(
(A− 2)

(βL

4τ(1− τ)2
)2

+
(βL

4(1− τ)2
)2)0.5∥θ1 − θ2∥2

=
(A− 2

τ 2
+ 1
)0.5 βL

4(1− τ)2
∥θ1 − θ2∥2

58

Appendix F. Lipschitz continuity of neural networks

In this section, I discuss the conditions under which an MLP (Multilayer Perceptron)

is Lipschitz continuous with respect to its parameter vector. Let us consider a two-layer

MLP with a bounded and Lipschitz continuous activation function σ, with Lipschitz

constant denoted by Lσ ≥ 0 and such that |σ(x)| ≤ Bσ for all x, where Bσ ≥ 0. This

includes popular activation functions, such as the sigmoid (Lσ = 1
4
) or the hyperbolic

tangent function (Lσ = 1). The argument made in this section could then be extended

by induction to MLPs with additional layers. Let us further assume that the Euclidean

norm of the input vector ∥y∥2 is bounded by By < +∞.

Without loss of generality, the MLP can be written as f(A1, A0,y) = σ(A1σ(A0y)).
11

Let us assume that A0 ∈ Rn0×ny and A1 ∈ Rn1×n0 . With these assumptions, and for a

fixed value of y, the MLP is a mapping from the space of two matrices M = (A1, A0) ∈
Rn1×n0 ×Rn0×ny to Rn1 . Let us equip this space with the norm ∥M1∥F + ∥M0∥F , where
∥A∥F =

(∑m
i=1

∑n
j=1 |aij|2

)0.5
is the Frobenius norm for a m×n matrix. For a vector (a

m×1 matrix), the Frobenius norm is the usual Euclidean norm ∥v∥F =
(∑m

i=1 |vi|2
)0.5

=

∥v∥2. For a single matrix (or vector), we may also use the max norm ∥A∥∞ = maxi,j |aij|.
Note that for m×n matrix, ∥A∥F ≤

√
mn∥A∥∞. Note that since we are only considering

finite-dimensional vector spaces, the proof does not depend on which norms are used, as

all norms are equivalent in this context.

Let us now consider two MLP parameters A(0) = (A
(0)
1 , A

(0)
0) and A(1) = (A

(1)
1 , A

(1)
0) in

Rn1×n0×Rn0×ny and find some upper bound of the form L∥A(0)−A(1)∥F for the difference

∥g(A(0))− g(A(1))∥F , where g(A(i)) = f(A
(0)
1 , A

(0)
0 ,y). For such an upper bound to exist,

we further need to assume that the MLP parameters are restricted to a compact subset

of Rn1×n0 × Rn0×ny . Here, it implies that all the entries of A1 and A0 are bounded

(in absolute value) by a finite real number. This ensures that ∥A(0)
1 ∥F and ∥A(1)

1 ∥F are

bounded by a finite real number BA ≥ 0, because for m×n matrix ∥A∥F ≤
√
mn∥A∥∞.

11In general, MLPs also include the addition of a bias vector at each layer: f(A1, A0,y) =

σ(A1σ(A0y + b0) + b1). This can be written as σ(Ã1σ(Ã0ỹ)), where Ãi =

(
Ai bi

0 1

)
denotes an

augmented matrix, and ỹ =

(
y

1

)
denotes an augmented vector, such that the affine transformation

Aiy + bi can be represented by a matrix multiplication Ãiỹ.

59

Combining these assumptions, we get:

∥g(A(0))− g(A(1))∥F = ∥σ(A(0)
1 σ(A

(0)
0 y))− σ(A

(1)
1 σ(A

(1)
0 y))∥F

≤ Lσ∥A(0)
1 σ(A

(0)
0 y)− A

(1)
1 σ(A

(1)
0 y)∥F

= Lσ∥A(0)
1 σ(A

(0)
0 y)− A

(0)
1 σ(A

(1)
0 y) + A

(0)
1 σ(A

(1)
0 y)− A

(1)
1 σ(A

(1)
0 y)∥F

≤ Lσ

(
∥A(0)

1 ∥F∥σ(A(0)
0 y)− σ(A

(1)
0 y)∥F + ∥σ(A(1)

0 y)∥F∥A(0)
1 y − A

(1)
1 y∥F

)
≤ Lσ∥y∥F

(
LσBA∥A(0)

0 − A
(1)
0 ∥F +Bσ∥A(0)

1 − A
(1)
1 ∥F

)
≤ LσBy(LσBA +Bσ)

(
∥A(0)

0 − A
(1)
0 ∥F + ∥A(0)

1 − A
(1)
1 ∥F

)
= LσBy(LσBA +Bσ)︸ ︷︷ ︸

=L≥0

∥A(0) − A(1)∥F

The second line uses Lipschitz continuity of the activation function. The third line adds

and subtracts the same value, while the fourth lines uses the triangular inequality. The

fifth line uses once again Lipschitz continuity of the activation function, and boundedness

of ∥A(0)
1 ∥F , ∥y∥F , and ∥σ(A(1)

0 y)∥F . The sixth lines adds and factorize to the right hand

side Bσ∥A(0)
0 − A

(1)
0 ∥F and (LσBA)∥A(0)

1 − A
(1)
1 ∥F , which are positive quantities.

To summarize, when (i) the activation function σ is Lipschitz continuous and bounded,

(ii) the input vector ∥y∥2 is bounded, (iii) the MLP parameter vector can only take finite

values, then the MLP is Lipschitz continuous with respect to its parameter values.

Condition (i) is not too restrictive, as it is met with popular activation functions (e.g.

sigmoid of hyperbolic tangent functions). One may even use a ReLU activation function,

since ∥σ(A(1)
0 y)∥F = ∥max{0, A(1)

0 y}∥F ≤ ∥A(1)
0 y∥F ≤ ∥A(1)

0 ∥F∥y∥F = BABy < +∞. As

already discussed in the main text, condition (iii) can be met by using gradient clipping

combined with a finite number of gradient descent steps, which ensures that the norm of

the gradient does not exceed a certain threshold. Similarly, condition (ii) might require

truncating exogenous variables with support R. Consider for instance the neoclassical

growth model where period t household’s income yt is equal to kαt ηt, with η denoting

lognormal i.i.d. productivity shocks. Boundedness of yt can be ensured by working with

a truncated lognormal distribution, or by using a finite discretization of the continuous

productivity process. It could also be truncated ex-post by discarding realizations of

state vectors exceeding a norm threshold during training.

60

Appendix G. Smooth OLG model with softmax and softmin functions

This section is concerned with the applicability of Proposition 3 to the OLG model of

Section 4.2. Sections D and E use the function ˜MLP(yt|θ) = max{τ,min{σ
(
MLP(yt|θ)

)
, 1−

τ}}, which introduces non-differentiabilities because of the presence of max and min op-

erators. Hence, Proposition 3 cannot be used directly.

Fortunately, the functions max(x, y) and min(x, y) can be smoothly approximated with

softmin and softmax functions, defined as:

softmax(x, y) =
1

a
ln
(
eax + eay

)
≈ max(x, y)

softmin(x, y) = −1

a
ln
(
e−ax + e−ay

)
≈ min(x, y)

where a > 0 is a parameter that controls the sharpness of these approximations. These

approximations can be made as accurate as one wants, in the sense that at the limit for

a tending to infinity, they yield the correct values:

lim
a→∞

softmax(x, y) = max(x, y)

lim
a→∞

softmin(x, y) = min(x, y)

Combining the softmin and softmax functions, one gets an everywhere differentiable

functions ˇMLP(yt|θ) = softmax{τ, softmin{σ
(
MLP(yt|θ)

)
, 1− τ}}, that has for limit

˜MLP(yt|θ) when a tends to infinity.

It remains to be shown that using ˇMLP(yt|θ), rather than ˜MLP(yt|θ), does not alter
the Lipschitz continuity of the bc-MC residual function, as established in sections D - F.

These sections use the fact that the function f(x) = max{τ,min{x, 1− τ}} is Lipschitz

continuous with Lipschitz constant equal to 1, where the function x→ max{τ,min{x, 1−
τ}} is applied element-wise to the vector x. If we show that the function f̌(x) =

softmax{τ, softmin{x, 1− τ}} is also Lipschitz continuous with Lipschitz constant equal

to 1, then the rest of the arguments developed in sections D - F also apply.

Let us first consider the function x ∈ R → softmax{τ, x}, for τ > 0 fixed. This function

is differentiable everywhere on its domain and has for derivative σ(a(x− τ)), where σ is

the sigmoid activation function σ(x) = 1
1+e−x . Because the sigmoid activation function

satisfies 0 < σ(x) < 1, ∀x ∈ R, it follows that the function x ∈ R → softmax{τ, x} is

Lispschitz continuous with Lispschitz constant L1 = 1. By the same token, the function

61

x ∈ R → softmin{τ, x} is also differentiable everywhere on its domain and has for deriv-

ative σ(a(1 − τ − x)). Hence, it is also Lispschitz continuous with Lispschitz constant

L2 = 1. The function f̌(x) = softmax{τ, softmin{x, 1 − τ}} is the composition of two

Lipschitz continuous functions, hence it is also Lipschitz continuous with Lipschitz con-

stant L3 = L1L2 = 1. Thus, the function x ∈ Rn → softmax{τ, softmin{x, 1−τ}} is also

Lipschitz continuous with Lipschitz constant equal to 1. Hence, the function f̌ is indeed

Lipschitz continuous with Lipschitz constant equal to 1 and Proposition 3 applies.

62

Appendix H. The (gradient-free) bc-MC operator with dynamic

selection of N∗ and unknown ergodic distribution

Algorithm 1 N∗-algorithm: (gradient-free) bc-MC operator with dynamic selection of

N∗ and unknown ergodic distribution

Initialization:

• Choose artificial neural network (ANN) architecture (including number of layers, nodes per

layer, activation functions) and define loss function using bc-MC operator.

• Initialize ANN parameter vector θ.

• Set number of episodes E.

• Set number of gradient descent iterations G per episode.

• Determine initial computational budget T ≡ MN
2 .

• Initialize hyperparameters (M,N).

• Choose frequency F for hyperparameters (M,N) update.

• Initialize learning rate γ and choose optimization algorithm (e.g., ADAM).

Episodes Loop:

for e = 1 to E do

Simulate time series using current ANN parameter vector θ. This gives us a current guess for the

ergodic distribution of endogeneous variables Π

Training Loop, given Π:

for i = 1 to G do

Compute decision functions using current ANN parameter vector θ, current guess for ergodic

distribution Π and current hyperparameters (M,N).

Compute loss using bc-MC operator with equation (13) and calculate its gradient using back-

propagation

or calculate an estimator of the gradient of the loss using equation (14).

Perform gradient descent step to update ANN parameter vector.

if i mod F == 0 then ▷ Update (M,N) every F iterations

Evaluate variance of loss function using current ANN parameter vector for different values

of (M,N), keeping the budget T constant (see Section I of the Appendix).

Dynamically adjust N to N∗ to minimize variance of loss.

Adjust M to M∗ to keep the budget T constant (M∗ = 2T
N∗).

end if

end for

end for

Output:

• Final trained ANN model, θ∗

63

Appendix I. Variance of the bc-MC loss function

The variance of the bc-MC loss function can be tightly characterized under certain

assumptions. For the moment, consider a model with a single stochastic equation, in

which case the bc-MC loss functions is

LM,N(θ) =
2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ε
i
m|θ)f(sm, εjm|θ)

Let fm|θ ≡


f(sm, ε

1
m|θ)

f(sm, ε
2
m|θ)

...

f(sm, ε
N
m|θ)

 denote the random vector of size N . Let us assume

that
(
f1|θ,f2|θ, ...,fM |θ

)
is an i.i.d. sample drawn from a multivariate normal distribu-

tion N
(
µθ,Σθ

)
. Further assume that for all m ∈ {1, ...,M} and (i, j) ∈ {1, ..., N}2,

E(f(sm, εim|θ)) = µf , Var(f(sm, ε
i
m|θ)) = σ2

f , and Cov(f(sm, ε
i
m|θ), f(sm, εjm|θ)) =

ρf for all i ̸= j. In particular, µθ is a vector of size N where each element is equal to µf .

Σθ is a N ×N matrix where diagonal elements are equal to σ2
f and off-diagonal elements

are equal to ρf . These assumptions can be seen as originating from a first order Taylor

expansion of the function f around the mean value for (s, ε), when the state vector s

and the zero-mean innovation vector ε are both independent and normally distributed.

Under these assumptions, one can show (see Pascal, 2024) that the variance of the loss

is equal to:

Var(LM,N(θ)) =
2

MN(N − 1)

[(
(N − 2)2 +N − 1

)
ρ2f +

(
2(N − 2)ρf + σ2

f

)
σ2
f

+ 2(N − 1)
(
σ2
f + (N − 1)ρf

)
µ2
f

]
Let us now consider the case where the model has K stochastic equations (with µk =

1
K
):

LM,N(θ) =
1

K

K∑
k=1

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

fk(sm, ε
i
m|θ)fk(sm, εjm|θ)

Let fk,m|θ ≡


fk(sm, ε

1
m|θ)

fk(sm, ε
2
m|θ)

...

fk(sm, ε
N
m|θ)

 denote the random vector of size N , assumed to be an

i.i.d. draw from a multivariate normal distribution N
(
µk,θ,Σk,θ

)
, with µk,θ = µfk1N

64

and Σk,θ = σ2
fk
IN + (JN − IN)ρfk . Here, 1N denotes a N × 1 vector of ones, IN is the

N × N identity matrix, and JN denotes a N × N matrix of ones. If we assume that

fk1,m|θ and fk2,m|θ are independent, for all k1 ̸= k2 in {1, ..., K}, one gets

Var(LU
M,N(θ)) =

2

KMN(N − 1)

K∑
k=1

[(
(N − 2)2 +N − 1

)
ρ2fk +

(
2(N − 2)ρfk + σ2

fk

)
σ2
fk

+ 2(N − 1)
(
σ2
fk
+ (N − 1)ρfk

)
µ2
fk

]
where for all k ∈ {1, ..., K}, m ∈ {1, ...,M} and (i, j) ∈ {1, ..., N}2, E(fk(sm, εim|θ)) =
µfk , Var(fk(sm, ε

i
m|θ)) = σ2

fk
, and Cov(fk(sm, ε

i
m|θ), fk(sm, εjm|θ)) = ρfk for all i ̸= j.

For a fixed number of equations (K) and for a fixed computational budget given by

T = MN
2
, finding the minimum of Var(LU

M,N(θ)) is a one-dimensional minimization

problem in N . The quantities µfk , σ
2
fk
, and ρfk can be approximated by random sampling

and using sample statistics.

Appendix J. Connection with the Parameterized Expectation Algorithm

This section demonstrates that the results of Section 4.4 can be generalized to the

case N > 2. In particular, I show that if the function f used to form the bc–MC loss

function can be decomposed as f(sm, ε
i
m|θ) = g(sm, ε

i
m|θ) − sTmθ, then the gradient of

the bc–MC loss function reduces to an expression that is equivalent to the gradient from

a linear regression of the sample averages 1
N

∑N
i=1 g(sm, ε

i
m|θ) on sm.

Consider an economic model characterized by a single equation. The extension to the

multiple-equations case is trivial, since equation (11) is a weighted average of the single-

equation case, and the gradient is a linear operator. The bc-MC loss function is given

by:

LM,N(θ) =
2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ε
i
m|θ)f(sm, εjm|θ)

The gradient of LM,N with respect to the parameter vector θ is:

∇LM,N(θ) =
2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

∇f(sm, εim|θ)f(sm, εjm|θ)+∇f(sm, εjm|θ)f(sm, εim|θ)

Because by assumption the function f can be decomposed as: f(sm, ε
i
m|θ) = g(sm, ε

i
m|θ)−

sTmθ, we have that ∇f(sm, εim|θ) = ∇g(sm, εim|θ)− sm yielding:

∇LM,N (θ) =
2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

[
∇g(sm, εim|θ)−sm

]
f(sm, εjm|θ)+

[
∇g(sm, εjm|θ)−sm

]
f(sm, εim|θ)

65

The term inside the double sum can be written as:

−sm
[
g(sm, εim|θ)+g(sm, εjm|θ)−2sTmθ

]
+∇g(sm, εim|θ)f(sm, εjm|θ)+∇g(sm, εjm|θ)f(sm, εim|θ)

Hence, the gradient of the loss can be expressed as:

∇LM,N(θ) =
1

M

M∑
m=1

−sm
2

N(N − 1)

N∑
1≤i<j

[
g(sm, ε

i
m|θ) + g(sm, ε

j
m|θ)− 2sTmθ

]
+

1

M

M∑
m=1

2

N(N − 1)

N∑
1≤i<j

∇g(sm, εim|θ)f(sm, εjm|θ) +∇g(sm, εjm|θ)f(sm, εim|θ)

(34)

Using the fact that
∑N

1≤i<j

[
g(sm, ε

i
m|θ) + g(sm, ε

j
m|θ)

]
= (N − 1)

∑N
i=1 g(sm, ε

i
m), the

first line of equation (34) can be simplified as:

∇LPEA
M,N(θ) =

1

M

M∑
m=1

−2sm

[(1

N

N∑
i=1

g(sm, ε
i
m|θ)

)
− sTmθ

]
(35)

Equation (35) is the gradient for the linear regression of 1
N

∑N
i=1 g(sm, ε

i
m|θ) on sm.

2, boulevard Royal
L-2983 Luxembourg

Tél. : +352 4774-1
Fax: +352 4774 4910

www.bcl.lu  •  info@bcl.lu

