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RÉSUMÉ NON TECHNIQUE

Au Luxembourg, l’outil principal pour mesurer l’évolution des prix des logements est un
indice trimestriel calculé par l’Institut national de la statistique et des études économiques
(STATEC) sur base des transactions immobilières contenues dans les extraits des actes
notariés. Cet indice se base sur une méthode dite “hédonique” qui consiste à établir une
relation statistique entre le prix d’un bien et les caractéristiques de ce bien, permettant
ainsi d’éliminer les effets liés à la composition changeante de l’échantillon. Or, comme
tout autre outil statistique, la méthode hédonique se base sur différentes hypothèses
sous-jacentes et présente un certain nombre de faiblesses.

Nous appliquons deux techniques alternatives pour mesurer l’évolution des prix de
vente des appartements au Luxembourg à travers le temps. Une première technique
souvent utilisée est la méthode des “ventes répétées” qui se base sur la comparaison
du prix d’un même objet immobilier qui a été vendu à plusieurs moments. D’abord,
nous estimons que depuis 2007, les ventes répétées concernent 44 % des transactions
immobilières au Luxembourg portant sur des appartements. Ensuite, nous appliquons
cette méthode pour créer un indice alternatif des prix des appartements.

Au délà des méthodes conventionnelles, l’intelligence artificielle (IA) et les techniques
d’apprentissage automatique fournissent de nouvelles méthodes pour estimer les indices de
prix. Bien que ces modèles sont souvent critiqués comme des “bôıtes noires”, des nouvelles
approches permettent de les rendre plus interprétables. Ainsi, ce cahier applique un simple
modèle d’apprentissage automatique aux transactions immobilières au Luxembourg pour
créer un nouvel indice des prix des appartements.

Après avoir détaillé la methodologie de ces trois indices, nous évaluons la performance
de chaque indice selon sa volatilité, la taille de ses révisions, sa cohérence avec les autres
indices et ses indications hors échantillon. Nos principaux résultats sont les suivants : les
trois approches produisent des indices avec des tendances similaires dans le temps, ce qui
réduit l’incertitude liée à l’interprétation d’un seul indice de prix. En particulier, les trois
méthodes confirment la rapide progression des prix entre 2018 et 2021. De même, nos
résultats confirment le fort ralentissement en 2022 ainsi que la baisse des prix en 2023.
L’indice basé sur des techniques d’apprentissage automatique suit de près les indices plus
traditionnels, ce qui confirme empiriquement la validité d’une telle approche.

Le choix final de la méthode dépend souvent des besoins de l’utilisateur. Alors
que l’indice basé sur des méthodes d’apprentissage automatique est considérablement
moins volatil et donc plus facile à interpréter, il est par contre sujet à des révisions plus
importantes que celles des deux autres méthodes conventionnelles.
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NON-TECHNICAL SUMMARY

In Luxembourg, the main indicator for residential property price developments is a
quarterly index calculated by the National Institute of statistics and economic studies
(STATEC) based on property transactions extracted from notary deeds. The index is
based on the so-called “hedonic” method, which consists of establishing a statistical
relationship between the price of a dwelling and its characteristics, thus eliminating effects
linked to the changing composition of the sample. However, like any other statistical
tool, the hedonic method is based on different underlying assumptions and has a number
of weaknesses.

We apply two other methods to measure the evolution of apartment prices over time.
One commonly used alternative is the so-called “repeat sales” method, which focuses
on changes in the sale price of properties that have been sold more than once. First,
we estimate that since 2007, repeated sales have concerned 44 % of transactions in
Luxembourg involving apartments. We then apply this method to create an alternative
apartment price index.

In addition to these conventional methods, artificial intelligence (AI) and machine
learning techniques provide new methods for estimating price indices. Although ML-based
models are often criticized as black boxes, there are different tools to help interpret
their output. In this paper, we apply a “random forest” algorithm to Luxembourg
property transactions to generate an apartment price index from individual transactions
in Luxembourg.

After detailing these three methods, this paper evaluates their performance according
to volatility, proneness to revisions, coherence and out-of-sample fit.

Our main results are the following: all three methods identify similar trends over
time, which reduces the uncertainty associated with the interpretation of any single price
index. Rapid growth in apartment prices, especially from 2018 to 2021, is confirmed by
all three methods. Similarly, all three methods confirm the sharp slowdown in 2022 and
the decline in apartment prices during 2023. The random forest index closely follows the
traditional indices, which empirically confirms the validity of this approach.

The final choice of the method often depends on the user’s needs. While the random
forest index is considerably less volatile and therefore easier to interpret, it is however
subject to revisions as new observations are released and these revisions tend to be larger
than those of the traditional indices.
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1 Introduction

The need for reliable data on residential property prices is widely recognised by
international institutions. In the midst of the Financial Crisis, the 2009 Report to
the G-20 Finance Ministers and Central Bank Governors (Financial Stability Board,
2009) described data on dwellings and the associated price changes over time as “critical
ingredients for understanding household wealth, its evolution over time, and for the
vulnerability of households’ financial position”.

Understanding the drivers of a housing cycle and its implications for the broader
economy is a key focus of attention for policy makers (Scatigna et al., 2014). That
is because downturns in residential property prices have been a catalyst for major
economic crises1. In practice, Residential Property Price Indices (RPPIs) are often used
in conjunction with other macroeconomic statistics to monitor the broader economy.
RPPIs have a number of other important uses, apart from serving as a measure of price
changes. In its technical handbook, Eurostat (2013) identifies various potential use cases,
including:

• A macro-economic indicator of economic growth.

• An input into estimating the value of housing as a component of wealth.

• A financial stability indicator.

• A means for within-country and international comparisons.

These many use cases emphasize the need for viable indices. However, methodological
differences can undermine comparisons across countries, regions or time (Silver, 2012).

Property transactions are infrequent and apply to highly heterogeneous objects, so
that changes in compilation methods or coverage can affect RPPIs. For example, the
COVID-19 pandemic illustrated how geographical coverage can be an important feature.
As the opportunity costs associated with commuting time decreased with the deployment
of work-from-home arrangements, housing demand may have shifted away from city
centres towards rural areas (Roma, 2021). Such changing preferences could lead to
diverging price dynamics in different regions, which are not captured by a national index.

1Crowe, Dell’Ariccia, Igan, and Rabanal (2013) find that, of the 46 systemic banking crises for which
data was available, more than two-thirds were preceded by house price boom-bust patterns. Mortgage
booms have also been identified as a critical driver of financial instability, playing a central role in the
recurrence of economic crises (Jordà et al., 2015, 2016).
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Some of the key choices in RPPI design are:

• Adjustment method for changes in quality.

• Coverage by geographical region (national, regional, urban centers,...).

• Coverage by type of housing (row or detached houses, apartments,...).

• Data source (real estate agents, online websites, land registry or notary office,...).

The first three items are particularly relevant for this paper. As a result of the
different choices in the design of RPPIs, there are often several indices available for a
given country. In general, these are published by national statistical institutes, with
some complementary RPPIs published by private data providers and/or other public
institutions. Because measurement difficulties can prevent a single index from covering all
requirements, users often have to make compromises (e.g. RPPIs may only be available
at the national level).

Using three different RPPIs available in the US, Figure 1 shows that, despite differences
in methodology and data, there are clear similarities in the trend and timing of turning
points. However, it also shows that there are differences among RPPIs and that these
differences can vary significantly from quarter to quarter.

Figure 1: Examples of available Residential property price indices in the US
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Note: S&P CaseShiller National; S&P CaseShiller 10 City Composite; Federal
Housing Finance Agency. Data retrieved from Bloomberg Terminal. Sources: Standard &
Poors, Federal Housing Finance Agency.



5

In Luxembourg, the National Statistical institute (STATEC) publishes quarterly
statistics on acquisition prices for dwellings. These include the number of transactions,
average prices per transaction, average prices per square meter and so-called hedonic
price indices that correct for differences in housing characteristics. The price indices are
broken down into different categories, distinguishing between existing houses, existing
apartments and newly built apartments, allowing a comparison of price dynamics in
these market segments.

In this paper we reproduce the hedonic index from STATEC and apply two additional
methods to measure apartment prices in Luxembourg. First, we apply a so-called
“repeat sales” method, which assesses how valuations change over time by focusing on
the difference in sale price of the same apartment across sales at different moments
in time. Second, we apply a machine learning (ML) technique, the so-called “random
forest” approach, to generate apartment price indices for the different market segments
in Luxembourg.

The remainder of this paper is organised as follows. Section 2 presents the methodology
of the hedonic index, the repeat sales index and the random forest index. Section 3
describes the data. Section 4 reports the main results, broken down by type of index
and region and evaluates the empirical performance of the apartment price indices
by comparing interpretability, revisions and accuracy, meaning the ability to predict
out-of-sample transaction prices. Section 5 concludes.

2 Methodologies

The simplest approach to build a price index would be to use the mean or median price
across transactions, typically a month or a quarter. This would only require information
on individual transactions (price and date) and the resulting index would capture a
general trend in transactions over time.

However, as many authors have noted2, average or median price indices can give
a misleading impression of price trends over a given period. That is because the set
of dwellings being sold each period will have different characteristics, which changes
the composition of the sample from which average or median prices are calculated each
period. For example, a period when transactions are mainly in high-end dwellings
could be followed by a period when transactions are predominantly in low-end dwellings,
creating a false impression that average or median prices declined, including for dwellings
that were not sold. In the following, we present three methods to produce more reliable
residential property price indices.

2.1 Hedonic methods

The hedonic approach is based on an estimated relationship between the price of
a dwelling and several of its characteristics, such as its living surface, its geographical

2See for example Smith et al. (1988); Englund et al. (1999); Jansen et al. (2008).
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location or the number of parking spaces3. A hedonic RPPI therefore accounts for the
fact that the dwellings sold in a given period will have different characteristics from
those sold in another. In this paper, we follow the methodology used by STATEC (see
Lamboray (2010)), estimating the following “hedonic function”, that links the transaction
price p of a property i to the following k characteristics of i (X):

ln(pi) = α+
K∑

k=1

βkXk,i + εi (1)

• The surface of the dwelling.

• The square root of the surface of the dwelling.

• The type of dwelling (Newly built/Existing)

• Dummy indicating whether the dwelling is sold with a cellar

• Dummy indicating whether the dwelling is sold with a parking space

• The distance between the dwelling municipality and Luxembourg City

As in Lamboray (2010) we use a hedonic imputation approach to construct our
hedonic index. More specifically, we run separate hedonic regressions for a base period
and for the current period and use the estimated regression parameters to form imputed
measures of constant quality price changes. We thus reproduce the methodology used for
the official RPPI in Luxembourg to provide a benchmark for our results4.

Although the hedonic method is often used to built RPPIs, it requires choosing the
explanatory variables to include and the specification of the functional form (F. T. Wang
& Zorn, 1997). These choices are not obvious in practice. For example, the rapid
deployment of work-from-home arrangements during the COVID-19 pandemic may have
affected the additional value represented by a balcony or a garden. Although this
information is not available at the level of individual transactions in Luxembourg, it
seems plausible that such features would contribute positively to the price of the dwelling.

2.2 Repeat sales methods

The repeat sales approach assumes that changes in the price of a given property when
it is sold at different points in time (repeat sales) reflect the change in the general price
level for all dwellings. This implies that the characteristics of the property have remained
unchanged between sales. This approach avoids the hedonic regression requirement to
choose a set of characteristics that are observable for all dwellings or even to specify the
functional form linking prices to observed characteristics (Eurostat, 2013).

3In its handbook, Eurostat (2013) recognizes the hedonic approach as the “standard” one.
4There are some minor differences between the official RPPI and our internal estimates, particularly

for new apartments, mainly due to differences in the approach to clean raw data prior to estimation.
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By construction, the repeat sales method also controls for location at the finest level of
detail, while other methods are often unable to identify the exact location. For instance,
data available in Luxembourg only indicates the municipality where the dwelling is
located.

In practice, the repeat-sales model uses ordinary least squares to estimate a relation-
ship between the price progression (logarithm of the ratio between the first and second
sale price of each property) and a set of dummy variables taking the value -1 in the first
sale period (τ), 1 in the second sale period (t) and 0 for all other periods until the end of
the sample (S). Thus, the regression equation is:

ln

(
pi,t
pi,τ

)
=

S∑

s=0

ΘsDi,s + εi,t with (0 <τ <t <S) (2)

where Di,s denotes the dummy variable identifying object i in period s and εi,t is the
error term with zero mean and constant variance σ2. The repeat sales index from period
0 to period S can be obtained by exponentiating the corresponding regression coefficients
Θs

One drawback of the repeat sales method is that property that is sold at two different
points in time may no longer have the same characteristics due to renovations or changes in
the surroundings. Therefore, the longer the time span between two sales, the less plausible
the constant-quality assumption underlying this approach. We relax this assumption
by applying the weighted repeat sales approach introduced by Case and Shiller (1987),
putting less weight on dwellings sold after long time intervals. This approach is discussed
in more detail in Kaempff and Kremer (2021).

2.3 Random forest algorithm

In addition to these two “traditional” methods to construct RPPIs, this paper applies
an index based on a relatively new approach to modeling residential property prices
using machine learning (ML) algorithms. While several authors proposed ML solutions
to residential property price estimation (see for instance C. Wang and Wu (2018); Fan et
al. (2006); Baldominos et al. (2018)), their application to RPPIs remains limited. This
section describes the random forest algorithm5, a common ML technique and follows a
methodology proposed by Krause (2019).

Random forest is an ensemble technique that combines simple models (“building
blocks”), in this case regression trees, to obtain more stable and powerful statistical
learning models (James et al., 2013). Over time, random forest became a standard non-
parametric regression tool, which can use different types of predictor variables without
making any prior assumption on their association with the dependent variable.

Regression trees are easy to interpret and can be used to approximate nonlinear
relationships. However, they suffer from high variance, which makes them unstable.
High variance means that the structure of a single tree (and hence its predictions) may

5In this paper,we use the ’ranger’ package in R (Wright & Ziegler, 2017), which is a fast implementation
of the methodology proposed by Breiman (2001).
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change considerably after small changes in the training data6. Regression trees, especially
if grown very large, tend to fit very well in-sample but do not perform as well when
predicting from a new set of observations, a phenomenon known as overfitting.

The random forest therefore works by bagging (bootstrap aggregation) multiple trees.
Bagging is a popular method to reduce the variance of a statistical learning method and
relies on the fact that for any set of k independent observations n1, ..., nk with variance
σ, the variance of the sample mean n is given by σ

k (James et al., 2013). Since we lack
independent training datasets, bootstrapping randomly selects subsamples (bootstrap
samples) from our dataset.

A second important feature of the random forest is that the algorithm does not take
into account all possible predictors in each tree. Instead, at each node in the tree, it
randomly selects a subset of predictors, or so-called features, and chooses the best node
splits from this subset (feature bagging)7. For our random forest, we use the following
set of predictors X:

• The period of the transaction.

• The surface of the dwelling.

• The distance between the dwelling municipality and Luxembourg City

• Dummy indicating whether the dwelling is sold with a cellar

• Dummy indicating whether the dwelling is sold with a parking space

• The total surface of cellar(s)

• The total surface of parking space(s)

An individual tree “grows” by randomly selecting the subset of predictors at each
node, choosing the best split and then passing on to the next two nodes. A set of trees
grown on the same dataset makes up a random forest. For a continuous outcome variable,
the final prediction is made by averaging the predictions from individual trees, which
are themselves obtained by averaging the observations grouped in the final node (leaf)
that the tree assigns to the inputted observation. We draw B separate bootstrap samples
(with replacement) , grow a tree for each bootstrap sample and then obtain an aggregate
prediction by averaging the predictions of all B trees:

f̂bag(xb) =
1

B

B∑

b=1

f̂ b(xb) (3)

where f̂ b(xb) denotes the predicted outcome from the bth tree which has randomly
selected a subset xb of the predictors available in X. Thus, the random forest extends
simple bagging by not only randomly selecting subsets of the training data but also
randomly selecting subsets of the predictors.

6Using ML terminology, regression models are “trained” rather than “estimated” and the estimation
sample is referred to as the training sample.

7See appendix A.2 for more details on node splitting.
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The basic steps for growing our random forest composed of B trees are as follows:

Random forest algorithm

1. Draw a bootstrap sample b with n random observations (transaction price with
the complete set of characteristics xb) from the data set with N observations8.

2. For subset xb drawn in Step 1, one individual tree is constructed by:

- randomly selecting, at each node9, a subset from the complete set of predictors
(features) X10.

- splitting the observations in the given node, on the basis of the previously selected
subset, into two new nodes and continue the process to split each new node until
splitting the newest node would create nodes below the minimum node size s (see
appendix A.1).

3. Inputting a new observation into the root node of the tree from Step 2 will generate
an output f̂ b(xb) by moving down the branches of the tree until it reaches the
corresponding leaf (final node), where the prediction is given by the average value
of the output variable across the observations in that leaf.

4. Steps 1 to 3 are repeated until B regression trees are created, making up a forest.
For the entire forest, the final prediction f̂bag(xb) is computed by averaging the
outputs from input xb obtained from the B trees (equation 3).

The parameters of the random forest algorithm are set by K-Fold cross validation
(See Appendix A.3 for more details):

- number of regression trees B = 500
- number of predictors f = 4
- minimum node size s = 5
.

8By randomly drawing observations with replacement from the data set, the bootstrap sampling
algorithm selects 1−(1− 1

N
)N of the observations from the data set. For large data sets, this approximately

equals 62.3 % of the N observations in the data set.
9Using ML terminology, a node is a sub-sample of data and an associated decision rule.

10In practice, we constrain the algorithm to use the transaction period as predictor for each node, so
that f predictors are randomly selected in addition to the transaction period.
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Figure 2: Simplified random forest - Illustration
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Although the random forest is a widely used algorithm, it is often criticized as a
“black-box model” for producing predictions that are difficult to interpret (Ribeiro et
al., 2016), This is because, random forests do not create coefficient estimates (like more
traditional methods), which could help to understand which predictors are driving a
particular outcome.

2.3.1 Interpretability methods

Model interpretability methods can be applied to black-box models to improve pre-
dictions from machine learning11. In this paper, interpretability is defined as information
that helps the user determine how small changes to a given input affect the model output
(Slack et al., 2019).

Counterfactual methods provide interpretability by comparing predicted values from
ML models using hypothetical data points (counterfactuals) across a given input/feature
while holding all other inputs/features constant. Partial dependence plots (PDP) and
individual conditional expectations (ICE) (Goldstein et al., 2015) are common examples
of counterfactual methods.

• Partial dependence plots

11Breiman (2001) explicitly points out that “a forest of trees is impenetrable as far as simple
interpretations of its mechanism go. In some applications, (...) it is critical to understand the interaction
of variables that is providing the predictive accuracy.”
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Partial Dependence Plots (PDP) were introduced by Friedman (2001) to interpret
the results of ML algorithms, including the random forest. They visualise the marginal
effect of a selected input variable on the response variable. For our RPPIs, the objective
is to predict the impact of time on apartment prices.

Conceptually, a partial dependence function sets the feature of interest (transaction
period) to the same value for each observation and uses a trained algorithm to find
predictions (transaction price) over all the observations in the data set. These predictions
are then averaged across the entire data set to get the partial dependence value for that
period in time.

Formally, the partial dependence function for a given value j of a feature xt based on
the trained model f̂bag can be approximated as follows:

P̂DP (xt) =
1

N

N∑

i=1

f̂bag(xt, x
i
c | xt = j) (4)

In the context of our RPPIs, xt identifies a transaction period from the dataset and
xic contains the values of all other characteristics (predictors) for a given observation i.
To construct a PDP, xic is set to the same value for all observations and (4) is calculated
for each time period t in the sample, after which the predicted value for that period is
obtained by averaging predicted values over all the N observations.

PDPs visualise the process described above, by plotting every value of xt (time
periods) against the average predicted value (from Equation 4) across all observations
assuming they occurred in the given time period. The resulting plot shows the average
value (transaction price) as a function of time (see Figure 3 for an illustration of a
PDP)12. Since the PDP considers every observation in the dataset and produces a single
average prediction as a function of the variable of interest, it is referred to as a “global
interpretation method”.

One key assumption underlying PDPs is that the dwelling characteristics in xc are not
correlated with the time of sale xt. If this assumption is violated, the partial dependence
plots will include regions of the data that are very unlikely to be observed in practice
13. In our example, this assumption would be violated if regulations set a maximum
dwelling surface until a certain point in time, or if dwellings could not be sold with cellars
or parking spaces until a certain date, or if the maximum distance from Luxembourg
City was suddenly extended by new construction in distant areas that were previously
uninhabited. For our dataset, the correlation between the transaction period and dwelling
characteristics (predictors) is negligible 14.

12PDPs can be slow to calculate and computationally expensive. For an input variable xt with T
points in the range [xmint , xmaxt ] and N data points to evaluate the PDP, there are T ∗N evaluations of
the fitted model f̂bag, which in turn consists of B regression trees, to construct the PDP. For example,
Figure 3 consists of 468 transactions * 68 periods = 31,824 predictions to construct the ICEs, which have
each been derived from a random forest composed of 500 individual trees

13Suppose we were interested in the effect of height on a person’s running speed. If we were to include
age as an explanatory variable, we would run the risk of estimating speeds for individuals aged 10 years
and measuring 1m95, which are unlikely to be observed.

14Annex A.4 provides the correlation matrices for the set of predictors.
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• Individual conditional expectations

Since an average curve derived from the PDP can mask the complexity of the
modeled relationship, Goldstein et al. (2015) proposed to refine the PDP by plotting
the relationship between the predicted response and any predictor of interest for each
individual observation, hence the name “local interpretation method”.

Specifically, individual conditional expectations (ICE) plot the predicted outcome
(transaction price) for each observation as a function of time conditional on dwelling
characteristics of the given observation.

For each observation, an ICE curve can be plotted by varying its date across all
possible dates in the sample while holding its other characteristics constant. In other
words, ICE’s simulate the value of a given dwelling as if it had been sold once in every
time period in the sample. Repeating this step for each observed transaction in the
dataset and averaging across all predicted prices in each period gives the full PDP.

The ICE algorithm can thus provide insights into individual conditional relationships
estimated by a random forest. In Figure 3, we condition on time. However, PDPs
can condition on any characteristic that is not correlated with other predictors. For
example, assuming the distance to Luxembourg city is not correlated with other dwelling
characteristics, we can plot the predicted transaction prices of apartments based on their
distance to the capital.
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Figure 3: Illustration of individual conditional expectations and partial dependence plot
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Note: Illustration of ICE’s and PDP using 1 % of existing apartment transactions (468
observations). Vertical axis shows average predicted prices and horizontal axis time
periods. Grey lines show the predicted prices for each individual apartment (ICE) and
the blue line shows the average per quarter (PDP). Own calculations using the ’pdp’ R
package (Greenwell, 2017).

2.3.2 Constructing price indices using random forest algorithms

The random forest indices from this study will thus be derived from PDPs (Equation
4). Following the approach described in Lamboray (2010), we treat new and existing
apartments separately, and construct two random forest algorithms obtaining separate

PDPs for the two subsamples (P̂DP
new

and P̂DP
existing

). The final index is calculated
as the weighted average of the two sub-indices, where the weights in year T are the
corresponding shares of the value of all transactions in the previous year T-1.

As shown in Figure 3 above, PDPs and ICEs in levels are expressed in euros at current
prices. To make the random forest output comparable to the repeat sales index and the
hedonic index, we convert the PDPs into an index using the same base year (2015) as
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the other indices.

3 Data sources

The indices are constructed based on information on property transactions extracted
from notary deeds collected by the Administration de l’enregistrement, des domaines et
de la TVA (AED). These are complemented with information regarding the living surface
of apartments and annexes from the Administration du Cadastre (Land Registry). The
initial sample used in this study includes 100,537 apartment transactions15 registered by
the AED between the first quarter of 2007 and the fourth quarter of 2023.

Initial data processing harmonizes the treatment of the sales of new apartments and
eliminates irrelevant transactions16. This processing follows the common methodology
developed by a national working group on real estate statistics composed of members of
STATEC, the National Housing Observatory, the AED and the BCL17. The resulting
sample, used for the compilation of the hedonic price index and the random forest index,
includes 72,050 transactions (“the hedonic sample”).

Next, repeat sales involving the same apartment at different points in time are
identified. Although the database does not contain an explicit identifier for the dwelling
sold, this can be constructed for each apartment from the following information:

• The location of the apartment (municipality)

• The surface of the building plot

• The living surface of the apartment

• Textual description of the apartment18

• The total surface of parking space(s)

• The total surface of cellar(s)

If all these dimensions match for any two transactions at different points in time, then
the second transaction is assumed to be a repeat sale of the same apartment. With this
procedure, 31,746 transactions, or 44 % of the hedonic sample are identified as repeat
sales, i.e. transactions involving apartments that were sold more than once between
2007 and 2023. Three additional treatments are performed to eliminate certain sales
that could bias the index. First, we follow Jansen et al. (2008) by excluding repeat sales
where the interval between sales is less than 12 months, as these generally feature very

15In this paper we focus on apartment transactions as the AED database does not contain sufficient
information for houses (e.g. surface of dwelling) to calculate the indices described in Section 2.

16For example, office space transactions are excluded from the sample.
17For detailed descriptions of this processing, see Paccoud et al. (2024) and https://

statistiques.public.lu/dam-assets/fr/methodologie/methodes/economie-finances/Prix/

prix-logements/note-prix-de-vente.pdf
18The AED uses a textual description to identify the apartment withing the building (e.g. apartment

n. ... 1st floot, block C). This description remains fixed for each resale.

https://statistiques.public.lu/dam-assets/fr/methodologie/methodes/economie-finances/Prix/prix-logements/note-prix-de-vente.pdf
https://statistiques.public.lu/dam-assets/fr/methodologie/methodes/economie-finances/Prix/prix-logements/note-prix-de-vente.pdf
https://statistiques.public.lu/dam-assets/fr/methodologie/methodes/economie-finances/Prix/prix-logements/note-prix-de-vente.pdf
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high price gains, suggesting these dwellings were bought to renovate and resell. Second,
we exclude dwellings that were sold five times or more between 2007 and 2023 since
this suggests that they may have some hidden flaws. In a last step we trim the data
by excluding repeat sales with very high average annual price increase between sales19.
These cleaning steps are explained in more detail in Kaempff and Kremer (2021).

Table 1: Summary statistics for the hedonic and repeat sales samples

Hedonic Repeat Sales
(Initial)

Repeat Sales
(Clean)All New Existing

Number of transactions 72,050 25,461 46,589 31,746 27,594
Average price per m2 (thousand euros) 5,641 6,168 5,353 5,350 5,348
Average living surface (m2) 81.4 82.0 81.2 79.9 81.1

Sources: AED, Own calculations

The final sample used to calculate the repeat sales index includes 27,594 transactions,
representing 38 % of the hedonic sample. Table 1 compares the number of transactions,
the average price per square meter, and the average living surface for the different subsets
of data. Naturally, there are fewer observations of repeat sales (on the right), but the
average prices per square meter and average living surface are very similar to those of
the hedonic sample for existing apartments.

Figure 4: Number of repeat sales per year
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Sources: AED, Own calculations

19In a first step we stratify repeat sales by region (Canton Luxembourg and rest of the country) and
by year of the latest sale. We then eliminate, per stratum, repeat sales where price gains exceed median
price gains by 1.5 times the inter quartile range. Such price changes are likely to indicate apartments that
underwent major renovations. A similar treatment is applied for the hedonic index (Lamboray (2010))
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The analysis will focus on the period beginning in 2011 because there are obviously
few to no repeat sales at the beginning of the sample. By construction, the number of
repeat sales observed per year gradually increases over time as shown in Figure 4. Since
the sample begins in 2007 and we require a minimum holding period of 12 months, the
first year that we can observe a repeat sale is 2008. However, after data cleaning (see
Section 3), only 30 repeat sales are observed in that year. We therefore focus on results
starting in 2011, when there were roughly 370 repeat sales (92 per quarter). Despite the
sharp drop in transactions in 2023 due to higher interest rates and price declines, we still
observe enough repeat sales to consider the sample informative in that year.

4 Results

We not only differentiate between existing and newly built apartments but also
divide the sample into three geographical regions. We distinguish an initial period of
moderate price increases (2011-2017), a period of strong price increases (2018 - 2021)
and a period characterized by weaker prices and fewer transactions (from 2022). After a
visual comparison of the results, we aim to identify the advantages and disadvantages of
each index by comparing volatility, proneness to revisions, coherence and out-of-sample
fit.

4.1 National price developments

The upper part of Table 2 reports average annual growth rates for the hedonic index
and for the random forest price index. Average growth rates for the whole sample are
very closely aligned and vary between 6.4 % based on the random forest and 6.3 % based
on the hedonic index. According to all indices, price increases were clearly higher between
2018 and 2021. Between 2011 and 2017, the highest average annual growth rate was 4.8
% and the lowest was 4.5 %. Between 2018 and 2021, these shift up to 11.7 % and 11.5
%. From 2022 to 2023, the two indices capture slower price growth, with the hedonic
index averaging 2.2 % and the random forest index averaging 1.9 %. Standard T-tests
for equality of means confirm that, for the complete sample as well as for the different
subsamples, none of the differences in mean growth rates are statistically significant.
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Table 2: Apartment prices, average year-on-year growth (%)

2011-2023 2011-2017 2018-2021 2022-2023

Overall
Hedonic 6.3% 4.5% 11.7% 2.2%
Random forest 6.4% 4.8% 11.5% 1.9%

Existing
Hedonic 6.4% 4.6% 12.5% 0.6%
Random forest 6.4% 4.8% 12.1% -0.1%
Repeat sales 5.9% 4.2% 12.1% -0.7%

New
Hedonic 6.2% 4.4% 10.6% 3.9%
Random forest 6.7% 5.0% 10.7% 4.8%

Note: By construction, the repeat sales index excludes new apartments, so we report
results along with those of the hedonic index and the random forest index for existing
apartments

The lower part of Table 2 reports average annual growth in the sub-indices for new
and existing apartments. All indices confirm that price growth between 2011 and 2017
was similar for existing and newly built apartments. From 2018 to 2021 increases where
slightly higher for existing apartments, possibly because by 2017 newly built apartments
were much more expensive (6,500AC/m2) than existing apartments (5,100AC/m2). However,
the slowdown in prices from 2022 to 2023 was more pronounced for existing apartments
than for newly built apartments, at least partly reflecting unprecedented increases in
construction costs between 2022 and 2023. For both existing and new apartment prices the
differences in average growth rates across different indices are not statistically significant.
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Figure 5: Year on year growth rates by type of apartment(%)
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Figure 5 plots annual changes in each index by type of apartment. Comparing our
three methods, growth rates for the overall indices are fairly similar over the whole sample.
Occasionally, hedonic and random forest subindices for new and existing dwellings diverge
in terms of direction (e.g. 2022) or magnitude (e.g. 2021). For existing apartments,
where we observe roughly twice as many transactions (Table 1), the series are much less
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volatile. We will discuss these properties in sections 4.3 and 4.5.

4.2 Regional price developments

Although national indices of residential property prices can be a poor guide for local
prices, there are only few indices for comparisons within countries (Fraisse & Pionnier,
2020). In Luxembourg, the hedonic index is computed at the national level. However, the
National Housing Observatory (“Observatoire de l’Habitat”) does publish average prices
per square meter at the regional level. These prices are averaged for each municipality
where at least 5 transactions took place over the year20. Although these statistics provide
useful insights into price developments at the municipal level, they should be interpreted
with care because there is no quality adjustment.

The limited number of transactions at the municipal level is insufficient for an
application of the different approaches presented in this paper. However, accurate
regional measures of residential property prices can be important for policy. For instance,
they can serve to assess the impact public policy can have on property prices, such as
the construction of new roads or the improvement of existing public transport links.

Buyer preferences may also vary over time, which can lead to diverging price dynamics
across different regions. The rapid deployment of work from home in the context of the
COVID-19 pandemic stimulated a debate on the changing preferences for proximity to
the workplace. In Luxembourg, such a change in preferences would lead to an increase in
demand in regions further away from the capital.

We split our sample of apartment transactions into three geographic areas, the canton
of Luxembourg, the canton of Esch-sur-Alzette and the rest of the country21. This allows
us to distinguish between price movements in the two largest urban areas of the country
and to split the sample into three groups with roughly equal size (see Figure 6)

20See: https://logement.public.lu/fr/publications/observatoire/logement-en-chiffres-15

.html
21In 2023, the canton of Luxembourg represented 33 % of the population and the canton of Esch-sur-

Alzette another 30 %. The rest of the country combines the 10 remaining cantons that together represent
about 36 % of the population.

https://logement.public.lu/fr/publications/observatoire/logement-en-chiffres-15.html
https://logement.public.lu/fr/publications/observatoire/logement-en-chiffres-15.html
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Figure 6: Share of transactions by geographic region (%)
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Figure 6 shows the share of transactions across the different regions. The hedonic
sample contains more transactions from the canton of Luxembourg and the repeat sales
sample contains more from the Rest of the Country. This may reflect the concentration
of newly built apartments (which have not yet been resold) in the canton of Luxembourg.
Nonetheless, the regional distribution of transactions in the hedonic sample and the
repeat sales sample remain relatively close.

Table 3: Average annual price changes per region (%)

2011-2023 2011-2017 2018-2021 2022-2023

Hedonic 6.6% 5.9% 11.5% -0.4%
Repeat sales 6.1% 5.8% 11.5% -3.6%Canton Luxembourg
Random forest 6.7% 6.1% 11.2% -0.2%

Hedonic 6.1% 4.0% 12.9% -0.1%
Repeat sales 5.8% 3.7% 12.9% -1.2%Canton Esch-sur-Alzette
Random forest 6.1% 3.9% 12.6% 0.5%

Hedonic 6.1% 3.9% 10.5% 5.0%
Repeat sales 5.7% 3.5% 11.8% 1.4%Rest of the country
Random forest 6.2% 4.1% 10.7% 4.6%

Table 3 reports annual price changes since 2011 onwards for the three geographic
regions. Between 2011 and 2017, our price indices are closely aligned, showing somewhat
stronger price growth in the canton of Luxembourg. Between 2018 and 2021 the three
indices show the strongest price growth for the canton of Esch-sur-Alzette. Between
2022 and 2023 all three indices point to a more pronounced slowdown in the cantons of
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Luxembourg and Esch-sur-Alzette compared to the rest of the country. Furthermore,
the repeat sales index seems to show somewhat slower price growth than the two other
indices. Again, this reflects the fact that sales of newly built apartments cannot be
included in this index.

Figure 7: Apartment prices, year-on-year growth (%)
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Figure 7 plots annual growth rates by region. Two results stand out. First, apartment
prices started to grow strongly in the canton of Luxembourg before other regions followed.
Around the capital, annual growth rates started to exceed 10 % in 2017, while this did not
happen until 2019 for Esch-sur-Alzette and the rest of the country. Second, in the canton
of Luxembourg price growth already slowed in 2020, while for Esch-sur-Alzette and the
rest of the country this did not happen until 2022. As previously discussed, this second
result could in part reflect buyer preference shifting to put less emphasis on commuting
times or it could reflect the very high level of prices in the canton of Luxembourg (7,300
AC/m2 in 2017) compared to the rest of the country (4,700 AC/m2 in 2017).

4.3 Volatility

After comparing the three methodologies visually, we want to evaluate them.
Price volatility is an important feature of any housing market, not just because the

subset of dwellings sold may have different characteristics from one period to the next, but
also because housing supply is generally slow to adjust to changes in demand. However,
volatility is undesirable because it makes it difficult to identify peaks and troughs in real
time, as required for policy decisions.

For most households, housing constitutes the largest asset on their balance sheet,
so excessive price volatility can affect household welfare22 (Banks et al., 2017). In this
context, it is important to limit volatility due to measurement errors that arise from
small estimation samples.

Longer-term trends are often assessed from moving averages or average changes over
a longer period. While such methods reduce volatility, they may be unable to provide
timely signals of changes in trend (Eurostat, 2013). As a result, constructing a price
index always involves a tradeoff between timeliness and volatility.

One of the most common measures of volatility is the standard deviation, reflecting
the average deviation from the mean over a period of time. Table 4 reports the standard
deviation of year-on-year growth for the overall apartment price indices and separately
for existing and new apartments.

22According to the 2021 LU-HFCS wave, the main residence and other real estate property account for
91 % of Luxembourg households’ total real assets (Mathä et al., 2023).
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Table 4: Apartment price index volatility

2011-2023 2011-2017 2018-2021 2022-2023

Overall
Hedonic 5.5 1.6 3.3 9.5
Random forest 4.6 0.8 3.0 6.1

Existing
Hedonic 6.1 1.8 3.4 9.7
Repeat sales 6.2 1.6 3.4 9.8
Random forest 5.3 1.2 2.8 7.0

New
Hedonic 5.3 2.9 4.5 7.9
Random forest 3.8 1.7 4.1 2.4

Note: Volatility is measured by the standard deviation of year-on-year price changes.

Standard F-tests cannot reject the null hypothesis of equal volatility for the Random
Forest and hedonic indices of overall apartment prices over the complete sample. However,
on the subsample of moderate price growth (2011-2017), the random forest index seems
to be significantly less volatile than the hedonic index. For new apartment prices, the
random forest index is significantly less volatile than the hedonic index over the complete
sample and for all subsamples except for the period of high price growth in 2018-2021.
For existing apartment prices, all three indices have similar variance for the complete
sample, even though, the repeat sales index is estimated on a smaller set of observations.
Again, the random forest index is only significantly less volatile for the period of moderate
price growth. These results confirm the visual evidence already provided in Figures 7
and 5.

On this criterion, the random forest index seems to be slightly more suitable to
identify price trends, especially for new apartments, as the price signal is less blurred by
index volatility.

4.4 Revisions

Index reliability is often overlooked as a desirable feature of price indices, especially
for residential property prices, given their wide use (Clapham et al., 2006). However, all
methodologies presented in this paper produce indices that are subject to revisions over
time.

The repeat sales index is revised over time because new apartments are only gradually
added to the estimation sample once they are resold. When the property is first resold,
information is also added on the first sale in the past.

The random forest index is subject to revision due to the random nature of the
algorithm itself. With new observations becoming available, the algorithm may choose
different node splits, with an impact on the predicted values. PDPs also simulate the
hypothetical sale price of newly added transactions over the entire time span and the
predicted prices are then averaged over each period (see Section 2.3). The addition of
new transactions to the estimation sample will thus inevitably lead to revisions.

The hedonic method may also be subject to revisions if the regression coefficients in
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Equation 1 are re-estimated with every release of new observations and the fitted value
of past observations are revised with the new parameter estimates. In Luxembourg, the
national indices computed by STATEC are frozen after 2 quarters and only published
in Q+1 to account for the fact that certain transactions are transmitted with a delay.
In practice, a similar approach could be applied to the repeat sales and random forest
method, by fixing the index value after a certain delay if one judges that later revisions
are negligible. However, since we are interested in the sensitivity to revisions of the three
indices, we chose not to fix any of them after a certain cut-off period.

To assess index reliability, we follow Orphanides and Norden (2002) and measure the
extent of revisions by successively re-estimating the indices with every new data release.
By doing so, we capture index revisions from new data releases and from the estimation
methods themselves. For every period, we estimate three indices, one “real-time”, one
“quasi-real” and one final index. The real-time index is based on data transmitted until
the end of a given quarter, while the quasi-real index is estimated on data transmitted
with a delay of up to one quarter. The final index is based on all observations up to the
latest available quarter, which is 2023Q4 here23. Figure 8 compares year-on-year growth
of (quasi) real-time and final estimates for each method separately.

23For example, the real-time estimate for 2015Q1 corresponds to the first available estimate in 2015Q1,
while the quasi-real estimate takes into account 2015Q1 transactions that were transmitted until 2015Q2.
The final estimate, calculated in 2023Q4 hence also takes into account 2015Q1 transactions transmitted
later than 2015Q2.
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Figure 8: Revision of indices (annual price changes, overall, %)
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Note: The charts compare year-on-year growth for real-time ( ), quasi-real ( ) and
the final estimate ( ). Until the final estimate, a new index is obtained by adding new
observations up to a cut-off point and then re-estimating the model.

Table 5 shows the results. It is divided into two sections. The left section compares
the real-time estimate with the final estimate, while the right section compares the
quasi-real-time estimate with the final estimate. We calculate the correlation and root
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mean squared error (RMSE)24 for year-on-year growth (Columns (a) and (c)). In addition,
we provide summary statistics for the differences between the (quasi) real-time series and
the final series (Columns (b) and (d)).

The correlation between the real-time and final series is already high, but it increases
slightly when considering transactions with up to a one-quarter delay (quasi real-time).
Since most late transactions are transmitted within a one-quarter delay, the right side of
the table can be seen as representing the revisions due to the estimation method itself,
rather than the addition of past transactions to the estimation sample.

As expected, for the hedonic index the final and quasi real-time series are very closely
aligned once most transactions have been collected (Column c), and the differences
between the quasi-real and final estimates decrease (Column d). From the point of view
of the national statistical agency, it can therefore make sense to delay publication until
all transactions are received for the reference period, as this can eliminate most revisions
in the series.

It’s also noticeable that revisions to the random forest index continue over long periods.
Even for the quasi-real estimate, where the estimation sample is almost complete, the
maximum difference with respect to the final estimate can be over 2 percentage points.
This revision was particularly significant during periods of strong price growth, where
the random forest index adjusted more slowly to incoming data.

Table 5: Revision of average annual growth rates (%)

Final vs Real-Time Final vs Quasi Real-Time
YoY Series (a) Difference with final estimate (p.p.) (b) YoY Series (c) Difference with final estimate (p.p.) (d)

Correlation RMSE Mean (bps) SD Min Max Correlation RMSE Mean SD Min Max

Hedonic 99.92% 0.00 -0.03 0.23 -0.59 0.38 99.98% 0.00 -0.05 0.12 -0.35 0.12
Random forest 98.43% 0.01 0.64 0.99 -1.39 3.23 99.02% 0.01 0.52 0.67 -0.97 2.20
Repeat sales 98.97% 0.01 -0.01 0.89 -2.35 1.99 99.16% 0.01 0.01 0.80 -1.93 1.99

Note: Statistics based on year-on-year growth rates over 2011q1-2023q4.

4.5 Coherence

The availability of several alternative price indices reduces the uncertainty linked
to the interpretation of any single index, provided that they yield coherent results. To
analyse coherence across our indices, we follow Mink et al. (2012), who considered both
synchronicity and similarity measures to compare different estimates of the euro area
output gap. The synchronicity measure, originally proposed by Harding and Pagan
(2002), found numerous applications, including to house price cycles (Miles, 2023). We
define synchronicity between an index i indi and an index j in quarter t as:

24The root mean squared error is defined as RMSE =
√

1
n

Σni=1(yfi − yri )2 where n denotes the number

of periods, yri the year-on-year growth rate predicted by the real-time or quasi-real time index and yfi the
growth rate from the final index.
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ϕij(t) =
∆indi(t) ∗∆indj(t)

|∆indi(j) ∗∆indj(t)|
=





1 if ∆indi(t) ∗∆indj(t) > 0

−1 if ∆indi(t) ∗∆indj(t) < 0

0 otherwise

(5)

where ∆ indicates quarter-on-quarter growth. Less formally, the synchronicity measure
ϕij equals 1 if quarterly changes in index i and j have the same sign and -1 if they
carry opposite signs. We set synchronicity to 0 if at least one of the two growth rates
is equal to 0. We calculate synchronicity for both year-on-year changes and for the
cyclical components25 for all three indices . In the latter case, we calculate Equation 5
by replacing ∆indi(t) with the cyclical component of index i (respectively j) in quarter t.
Figure 9 shows year-on-year growth and the cyclical components for existing and new
apartments.

Figure 9: Year-on-year growth and cyclical component using Hodrick-Prescott filter
(λ=1600)

(a) New apartments

−10%

0%

10%

20%

2011 2013 2015 2017 2019 2021 2023

(b) Existing apartments

−10%

0%

10%

20%

2011 2013 2015 2017 2019 2021 2023

Note: Random forest ; Hedonic ; Repeat sales. Dashed lines correspond to
annual change rates and solid lines to cyclical components.

25For all three indices, we obtain their cyclical components by applying the Hodrick-Prescott (HP)
filter to their logarithms.
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This methodology yields a time-varying measure of synchronicity, indicating each
quarter whether our indices point the same direction. This constitutes an advantage
compared to traditional metrics like the Pearson correlation coefficients, that are time-
invariant and may suggest imperfect correlation even when all the indices are perfectly
synchronized.

Since our indices have different volatilities, the amplitude of their average fluctuation
will also differ. Therefore, we follow Mink et al. (2012) in measuring similarity as well
as synchronicity, where the former is defined:

γij(t) = 1− |∆indi(t)−∆indj(t)|
|∆indi(t)|+|∆indj(t)|

2

(6)

The numerator is scaled by the average absolute year-on-year change of the index pair,
where γij(t) = 1 indicates that the annual change in index i (or its cyclical component)
is equal to that of index j. By construction, the lowest value for γij(t) = 0.5.

Table 6: Index synchronicity and similarity (2011Q2-2023Q4)

Existing New

Random forest
vs. Hedonic

Random forest
vs. Repeat sales

Repeat sales
vs. Hedonic

Random forest
vs. Hedonic

Synchronicity

Year-on-year changes 100% 98% 88% 75%
Cyclical component (HP filter) 87% 90% 88% 79%

Similarity

Year-on-year changes 0.93 0.92 0.94 0.88
Cyclical component (HP filter) 0.79 0.82 0.83 0.75

Note: The table reports synchronicity and similarity measures of the respective index
pairs. The synchronicity scores indicate the number of quarters in which the index-pairs
point into the same direction over the entire sample. The similarity scores indicate the
average score for each index pair as defined in Equation 6.

Table 6 presents the synchronicity and similarity measures between different index
pairs, with the top panel showing synchronicity and the bottom panel similarity (see
Figure 10 for an illustration). For synchronicity, existing apartments demonstrate
higher alignment across all dimensions compared to new apartments. For instance,
synchronicity between random forest and hedonic indices for annual changes is 100 % for
existing apartments but only 75 % for new apartments. A similar pattern is evident for
cyclical components, where the same index pair achieves 87 % synchronicity for existing
apartments but only 79 % for new apartments. This disparity likely reflects the smaller
sample size available for new apartments, which may reduce model robustness. The
synchronicity scores also suggest that indices are better aligned in capturing annual
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changes than fluctuations in the cyclical components obtained by using Hodrick-Prescott
filtering.

The similarity measures reveal strong alignment across index pairs, especially for
year-on-year changes. This indicates that indices may occasionally point in different
directions, but their overall ability to capture price movements remains largely consistent.
For existing apartments, similarity scores range from 0.79 to 0.94, with the hedonic and
repeat sales indices exhibiting the highest similarity for both annual changes and cyclical
components. For new apartments, similarity measures are slightly lower overall, ranging
from 0.75 to 0.88.

Figure 10: Similarity scores per index pair - Existing apartments
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Notes: Random forest - Hedonic; Random forest - Repeat sales; Hedonic -
Repeat sales. Similarity scores are based on annual changes of the index series. Dotted
line show average similarity scores over the entire period.

In summary, the indices show generally high synchronicity and similarity across
both apartment types and dimensions, highlighting their alignment in capturing market
dynamics. New apartments, however, exhibit lower synchronicity and similarity scores
compared to existing apartments, likely due to their smaller sample size and potentially
greater variability in price movements (Section 4.3). In addition, similarity between index
pairs deteriorates especially during turning points in the price cycle. For instance, annual
price growth based on the repeat sales index turned negative in 2023Q1, one quarter
ahead of the two alternative indices, which led to a deterioration in similarity scores as
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evidenced in Figure 10.

4.6 Out-of-sample fit

Having examined the coherence of the indices and their sensitivity to revisions, we
now assess how well our residential property price indices can predict individual price
changes outside the sample on which they were constructed. Although the indices show
similar trends and cycles (Section 4.5), their levels differ, raising the question of whether
one index can predict individual price movements more accurately than the others. To
test this, we evaluate predictions on apartments that were not part of the estimation
sample. This approach addresses the challenge of “aggregation bias” that underlies any
price index. To construct RPPIs, heterogeneous and infrequently traded objects are
pooled together, which may reduce the model “fit” for certain individual dwellings26.

To assess the relative “accuracy” of different indices, we follow a procedure similar
to the one proposed by Krause (2019) and Bogin et al. (2019) based on repeat sales.
For each index, we estimate “out-of-sample predictions” of individual apartment prices,
using the estimated price change between the first and second date of a repeat sales
transaction. Using the notation from Equation 2, we define the predicted price of a
repeat sales apartment that was initially sold in period τ and then resold in period t
as p̂i,t = indt

indτ
pi,τ , where indt corresponds to the index value in period t and pi,τ to the

observed price in the first transaction.
In a second step, we measure how close this estimate is to the observed price and

we define the error as ei,t = p̂i,t − pi,t. We use standard forecast analysis statistics to
evaluate relative accuracy, computing the “Mean Absolute Percentage Error” (MAPE),
where the MAPE for a given index is equal to 1

N

∑N
i |

ei
pi,t
|, where all N observations are

repeat sales outside the estimation sample.
We use K-Fold cross-validation to perform our analysis, splitting the estimation

sample into five “folds”, four randomly chosen training samples and one evaluation
sample from which we select all the repeat sales27 (James et al., 2013). This “out-of-
sample” evaluation method gives us an idea on how well the indices can predict price
movements for individual apartments that were not included in the estimation sample.
Implicitly, we thus assume that the transactions held out from the estimation sample
follow the “true” price trend and that the observed sale price is the best indicator of an
apartment’s sales value. This might not always be true, for instance in case of a forced
sale, but we address this point with our data cleaning procedure described in Section 3.

The steps for this evaluation method can be summarised as follows (see Annexe A.5
for an illustration):

26 Bollerslev et al. (2016) construct a daily RPPI for 10 major US metropolitan areas to help alleviate
potential “(...) aggregation biases that may plague the traditional coarser monthly and quarterly indices
if the true prices change at a higher frequency.”

27Since we consider the repeat sales index informative from 2011 onwards (Section 3), we focus on
repeat sales transactions where the first sale date occured after 2010. This provides approximately 9800
repeat sales transactions that we use to evaluate out-of-sample accuracy (Figure 11).



31

Estimating index accuracy

1. Split the entire sample into K = 5 random folds (subsamples).

2. Estimate each index based on four out of the K randomly chosen (training) folds28.

3. Identify all the repeat sales transactions from the remaining fold (validation set).

4. For each index, compute the error ei,t between the observed and the implied price
of the repeat sales identified in Step 3.

5. Repeat Steps 2-4 K times and report the MAPE for each index.

Table 7 reports the accuracy measures (MAPE) for the national sample and for the
regional sub-samples. Figure 11 compares the observed and predicted price levels (left
panel) and annualized price changes (right panel) for the random forest index. One
limitation of this analysis is that the MAPE assigns the same weight to all transactions,
regardless of the interval between sales and therefore does not consider that errors may
increase with time (as documented in Bogin et al. (2019)). We relegate this adjustment
to future research on this topic.

Figure 11: Out-of-sample predictions (Random forest)
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Note: X-axis corresponds to observed values and Y-axis to the out-of-sample predictions.
The blue line represents the linear fit.

28Bogin et al. (2019) refer to these indices estimated on a subset of the data as “trial” price indices.
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Thus, we randomly split the entire sample of transactions into 5 folds and then treat
each of these folds in turn as the evaluation fold, estimating the model on the other four
folds to predict repeat sales in the evaluation fold. From Table 7 we can read that over
all observations in Esch-sur-Alzette the random forest yields an average (out-of-sample)
prediction error of approximately 8.8 %.

Table 7: Accuracy of out-of-sample predictions of repeat sales prices, by index

Price level (MAPE)
Hedonic Random forest Repeat sales

Overall 9.96% 10.02% 9.96%
Esch-sur-Alzette 8.80% 8.80% 8.90%
Luxembourg 10.45% 10.40% 10.62%
Rest of the country 9.50% 9.30% 9.34%

Note: The national sample is composed of all repeat sales. Regional breakdowns consider
only repeat sales in that given region.

The average forecast error is similar across the three methods, which is reassuring in
the sense that the indices are fairly accurate, on average, in predicting individual price
changes out-of-sample. To address the potential aggregation bias arising from apartments
appreciating at different rates across regional submarkets grouped within a national
index, we calculate accuracy measures for regional indices (Table 7). Looking at these
regional breakdowns, we see that out-of-sample forecast accuracy is again similar across
the three price indices and tends to be lowest for the canton of Luxembourg, possibly
suggesting a higher heterogeneity in apartment price developments around the capital.
For the two other regions out-of-sample forecasting accuracy appears to be higher despite
the lower number of observations.

Contrary to some expectations, our findings at regional level reveal that no single
approach considerably improves out-of-sample accuracy. One possible explanation is
that larger markets, typically characterized by greater heterogeneity in apartment types
(variations not fully captured by explanatory variables), may exhibit distinct price trends
that justify more granular indices. In contrast, since the Luxembourg market is relatively
small and therefore more homogeneous, it may not require such granularity. A national
index that incorporates key characteristics, including the distance to the city center, may
thus suffice. Moreover, the results highlight a trade-off between aggregation bias and
estimation error, particularly when fewer transactions are available to construct regional
indices (Bogin et al., 2019).

5 Conclusion

In this paper, we compare the performance of three different methods to calculate
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a residential property price index from individual transactions on apartments sold in
Luxembourg. In addition to the hedonic method, used by the national statistical office
to calculate the official index, we present the repeat sales method and the random forest
algorithm, a common machine learning method that has been applied to aggregate prices
of heterogeneous goods.

The main conclusions are the following. All three methods give a similar picture of
trends at the aggregate level. The new random forest index closely tracks the two other
(more traditional) indices, which empirically supports the validity of this approach. In
addition, the random forest index is less volatile and therefore easier to interpret. Its
out-of-sample forecast accuracy for individual transactions is comparable to those of the
other indices. However, as new observations are released, the random forest method is
subject to greater revisions than the repeat sales method, meaning it provides a less
reliable signal of recent developments.

This paper presents a practical application of machine learning techniques to modelling
residential property prices and the results from this exercise are encouraging. Despite
some potential for improvement, the findings suggest that the random forest is at least
comparable and occasionally preferable to the traditional methods.

Since our indices are fairly similar, improvements need not focus on the estimation
method itself. Performance could be improved by focusing on the underlying data
describing the characteristics of a dwelling. In Luxembourg, important characteristics
such as the location or the size of an apartment are available via notary deeds. Other
relevant information, such as the number of rooms or major renovations are not available
from this source, although they could potentially improve overall performance.

Summing up, this paper compared the performance of three apartment price indices
based on different estimation methods. Users may decide which index best suits their
needs. However, consulting different, yet coherent, indices does reduce the uncertainty
associated with relying on any single price index.
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A Appendices

A.1 Regression trees

A regression tree is built through an iterative process that splits data into partitions
or “branches” and continues splitting each partition into smaller groups (“recursive
partitioning”) (Breiman et al., 1984).

Initially, all observations from a sample (xi1, ..., xiK , yi), where xi1, ..., xiK is drawn
from the predictor space (X1, ..., XK) and yi is drawn from the outcome vector Y for
i = 1, ..., N , are grouped into a single partition at the top of the tree (root node).

Then the algorithm uses a splitting rule to assign observations to two partitions
based on the jth predictor from the predictor space in a process called “node splitting”
(Appendix A.2 explains how the predictor j and the splitting value s are determined
at each node). The algorithm continues splitting the set of observations at each node
(decision nodes) until it reaches a certain stopping criterion, such as the minimum number
of observations per node.

Predictions from a regression tree are made by starting with an observation i for at
the root node. To traverse the tree, we start at the root node and recursively move to the
left or right child nodes depending on the decision rule at the root node and the value of
the given feature in observation i. Depending on whether the value xij is less than or
greater than the splitting value s, the decision rule dictates a move down to the left or to
the right in the decision tree. This process is repeated in every subsequent decision node
until the observation is assigned to a terminal (leaf) node.

For a continuous variable, the predicted outcome is equal to the mean value across
all observations in that given leaf node. In general, regression trees tend to perform well
if the relationship between the outcome variable and its predictors is complex and poorly
approximated by linear forms such as the one described in Equation 1.
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Figure A.1: Structure of a regression tree - Illustration
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Notes. The blue path can be interpreted as follows: Out of 40 apartments, 26 were smaller than
95.4m2. This value was chosen by the algorithm as the best split because it minimizes the Residual
sum of squares in the two subsequent decision nodes (see Annexe A.2 for more detail). Among
those 26 apartments, 17 were located more than 14.8km away from the capital. In the subsample
represented by the leaf at the far left (Exit 1), the average transaction price equals AC413.011. For
this very simplified example, the minimum node size was set to 20 observations.

Regression trees can be displayed graphically, which explains in part why they gained
in popularity. Figure A.1 shows a stylized example of a regression tree, which has the
transaction price as an outcome variable. Two predictors are used, namely the surface
area of the apartment and its distance to the capital.

A.2 Node splitting rules

To build a regression tree, the set of possible values of the predictors (x1, ..., xK) has to
be divided into distinct regions. Using the notation from James et al. (2013), the process
can be summarised as follows:

1. For each split, the objective is to find regions R1, ..., RD that minimize the in-sample
residual sum of squares (RSS), which is given by:

RSS =

D∑

d=1

∑

i∈Rd

(yi − ŷRd)
2 (7)

where ŷRd is the mean of the outcome variable y for all observations that fall in
region Rd.

We start at the top of the tree and consider all K possible predictors at each
possible value xi1, ..., xiK . Next, we construct two regions, R1 and R2 such that
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R1(j, s) = {X|Xj < s} and R2(j, s) = {X|xj ≥ s}, where {X|xj < s} denotes the
region in which Xj takes a value less than a cutpoint s. The aim is to find two
regions, which lead to the greatest reduction in RSS.

2. From 7, we thus seek j and s to minimise the equation at the root node:

∑

i:Xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i:Xi∈R2(j,s)

(yi − ŷR2)2 (8)

3. We iterate this process in R1 and R2 and look for the best j and s to minimise the
RSS within each of the regions and stop the process when we reach a pre-defined
stopping criterion.

Figure A.2 shows a simple illustration of the three partitions from the stylized tree in
figure A.1.

Figure A.2: Partitioning process - Illustration

Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3Exit 3

Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1Exit 1 Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2Exit 2

0

50

100

150

0 10 20 30 40 50
Road distance (km)

S
ur

fa
ce

 (
m

2)

Notes. The three region partition from Figure A.1. The tree has stratified the apartments into three
distinct regions of the predictor space: Exit 1 = {X|Surface < 95, 4;Distance < 14, 8km}, Exit 2
= {X|Surface < 95, 4;Distance ≥ 14, 8km} and Exit 3 = {X|Surface ≥ 95, 4}.
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A.3 Random forest tuning parameters

The random forest algorithm depends on the values taken by several hyperparameters.
These control the structure of each tree (the minimum number of observations each
node should have to be split, min.node.size), the size of the forest (the number of trees,
num.trees) and its level of randomness (the number of variables considered as splitting
variables at each split, mtry). Controlling the set of hyperparameters is referred to as
“hyperparameter tuning” and relies on experimental results.

The random forest algorithm is known to perform well “out-of-the-box” (Athey &
Imbens, 2019). It requires little parameter tuning to perform well and most random
forest packages for statistical software define default settings. In our case, the default
mtry is equal to the rounded down square root of the number variables and the minimum
node size to 5. Still, there are no theoretical findings to support the default values and it
is generally recommended to validate them by using different parameter combinations
and to evaluate the performance of each setting. Parameter settings that correspond to
complex trees or forests may indeed overfit the training data, i.e. yield predictions that
are too specific to the training data and perform less well on other data. For example,
Breiman (2001) emphazized that the mtry should be chosen such that “the randomness
injected minimizes the correlation while maintaining strength”.

The charts below show the results from a cross-validation (CV) procedure. We use
K-Fold cross-validation, which splits the training data into K subsets, called folds. The
model is iteratively fitted K times, each time training the data on K-1 of the folds and
evaluating on the K-th fold. Here, K = 3 and in the first iteration we train on the first
two folds and evaluate on the third. In the second iteration we train on the first and
the third fold and evaluate on the second fold and so on. This K-Fold cross-validation
process is repeated several times, each time using different hyperparameter settings and
the final evaluations are based on the average outcomes from the 3 folds.

Figure A.3 shows the outcome of this process with the vertical axis indicating the
RMSE obtained from 3-fold CV. This was used to select the optimal model. The final
hyperparameters selected for the model are 4 randomly selected variables for each tree
with a minimum node size of 5. The results confirm that random forest generally performs
well with little finetuning as the selected parameters are very close to the default settings.
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Figure A.3: Hyperparameter finetuning
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Note: Each line plots the mtry value (x-axis) against the average RMSE (y-axis) obtained
from 3-fold CV. The different colors indicate the three minimum node sizes selected to
train the models: 5; 15 and 25

There is no clear guidance on the size of the forest, i.e. the number of individual trees
grown, but it should be set sufficiently high to get stable predictions. In this sense, the
number of trees is not a proper finetuning parameter because higher values are generally
preferable (Probst, Wright, & Boulesteix, 2019). On the other hand, the computational
intensity increases with the number of trees and the gains in terms of performance may
be negligible compared to the costs in terms of computation times.
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Figure A.4: Number of trees vs. Error
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Figure A.4 shows the RMSE obtained from re-estimating the random forest algorithm
with different settings for the number of trees. As we can see, there is only limited
improvement in terms of error reduction after 500 trees, which was chosen for our model
and which is a standard value in the literature. It also confirms empirical findings that
the biggest performance gain is achieved when training the first 100 trees (Probst &
Boulesteix, 2017).
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A.4 Correlation matrices

Figure A.5: Existing apartments
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Figure A.6: New apartments
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Notes. Figure A.5 and A.6 plot the correlation matrices for the numerical variables included in our
model. We included the transaction period (trans period), the distance to the capital (dist road),
the surface of the apartment (surface tot), the size of the cellar (cave surf) and the size of the
parking space(empl surf). Valid PDPs require that there is no strong correlation between the
variable of interest and the other explanatory variables, hence we are interested in the first row and
first column of the plots. The upper triangle provides the Pearson correlation coefficients between
the variables and the lower triangle shows the fitted line from a simple linear regression.
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A.5 K-fold cross-validation

Figure A.7: K-Fold Cross validation - Illustration
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